

U.S. Department of Transportation Federal Highway Administration

Traffic Analysis Capability Maturity Framework (CMF) Project Summary

June 9, 2022

James Colyar Federal Highway Administration (FHWA) Office of Operations

Project Overview and Understanding

- Traffic analysis is vital; supports and justifies agency decisions.
- Tools and methods are evolving to accommodate technologies and strategies:
 - Active transportation and demand management (ATDM), connected and automated vehicles (CAV), multi-modal systems, integrated corridor management (ICM), managed lanes, shared mobility, real-time simulation, emerging data sources, multi-resolution modeling, multi-scenario modeling.
- Increasing need to assess agency capabilities for traffic analysis and to identify a course of actions to improve the capabilities.

Project Goals and Objectives

- Assist agencies in assessing their strengths and weaknesses for incorporating traffic analysis activities into their business process.
- Recommend actions to improve capabilities in using analytical tools.
- Support agencies in identifying opportunities for improvement.
- Help agencies in developing a programmatic focus for traffic analysis.
- Create analytical consistency and uniformity across State departments of transportation (DOTs) and Federal/regional/local transportation agencies.
- Proposed approach:
 - Develop a Traffic Analysis CMF based on the original transportation systems management and operations capability maturity model (TSMO CMM*).

Project Deliverables and Schedule

- Most work occurred in the first half of 2021:
 - Stakeholder webinars
 - Annotated outline development
 - Final report development
- Final deliverables:
 - Full final report
 - Project summary tech brief
 - Project summary presentation

Final Report Outline

- Chapter 1: Introduction
- Chapter 2: Overview of the capability maturity framework
- Chapter 3: Assessment of current capability
 - Tabular approach (tables 1 through 8)
 - Multiple-choice questions
- Chapter 4: Identification of actions to improve capability
 - Tabular suggestions (tables 9 through 16)
 - Detailed discussion of suggestions

Steps to Utilize the CMF

7

Source: FHWA.

US. Department of Transportation Federal Highway Administration

Self-Assessment (Tabular) for Tool Capability Dimension

Sub-	Level 1–	Level 2–Initiated	Level 3–Established	Level 4–Integrated
Dimension	Performed	and Managed		and Optimized
Tool selection	Ad-hoc selection by project public agency manager and project consultant.	Selection based on national, Statewide, or agency-wide guidance. Selection constrained by available tools, knowledge, and experience.	Tool selection based on detailed agency- wide criteria and analysis type-specific criteria. Selection not constrained by available tools, knowledge, and experience.	Tool selection reflects agency staff's direct experience with using a wide variety of analysis tools from a wide variety of developers and vendors. Agency staff are also familiar with the developers' future plans and directions for these tools

Self-Assessment (Tabular) for Tool Capability Dimension (cont.)

Sub- Dimension	Level 1– Performed	Level 2–Initiated and Managed	Level 3–Established	Level 4–Integrated and Optimized
ΤοοΙ	Agency staff only	Agency staff only	Agency staff have	Full access to a wide
availability	have access to	have access to a	access to a variety of	variety of traffic
	one preferred	few preferred tools	tools for most types of	analysis tools and
	tool or are	(possibly from the	traffic analysis.	data analytics tools
	uncomfortable	same vendor) or are	However, for certain	from a wide variety
	with the thought	uncomfortable with	types of traffic analysis,	of developers and
	of using other	the thought of using	tool availability may be	vendors, which can
	tools beyond	other tools beyond	limited or sub-optimal.	be utilized based on
	their preferred	their few preferred	Limited use of data	project
	tool.	tools. Limited use of	analytics tools to	requirements.
		supplemental or	assess and improve	
		add-on tools.	the quality of the data	
			used for traffic analysis.	

Self-Assessment (Multiple-Choice) for Tool Capability Dimension

Q21: How do you select the tool(s) for your traffic analyses?

- a. The selection of the specific tool for the analysis is ad-hoc by the project public agency manager and the project consultant.
- b. Tool selection reflects national, Statewide or agency-wide guidance. However, the selection is constrained by the available tools, knowledge, and experience.
- c. Tool selection reflects agency-wide and analysis type-specific criteria, in addition to requirements and criteria written specifically for the project. In general, the selection is not constrained by the available tools, knowledge, and experience.
- d. Tool selection reflects agency staff's direct experience with using a wide variety of analysis tools from a wide variety of developers and vendors. Agency staff are also familiar with the developers' future plans and directions for these tools.

Self-Assessment (Multiple-Choice) for Tool Capability Dimension (cont.)

Q22: How do you describe your core capabilities in using analysis tools and the availability of these tools considering different levels ranging from sketch planning tools to microscopic simulation tools?

- Agency staff only have access to one preferred tool or are uncomfortable with the thought of using other tools beyond their preferred tool. We have the capability to regularly use less complex tools and limited capabilities to use more advanced tools.
- b) Agency staff only have access to a few preferred tools (possibly from the same vendor) or are uncomfortable with using other tools beyond their few preferred tools. We routinely use deterministic and/or microscopic simulation tools to meet project objectives. There is some ad-hoc use of DTA for a very limited number of projects. We have very limited supporting tools to assist in developing, calibrating, validating, and using the results of the models.

Self-Assessment (Multiple-Choice) for Tool Capability Dimension (cont.)

Q22: How do you describe your core capabilities in using analysis tools and the availability of these tools considering different levels ranging from sketch planning tools to microscopic simulation tools?

- c) Agency staff have access to a variety of tools for most types of traffic analysis. However, for certain types of traffic analysis, tool availability may be limited or sub-optimal. We routinely use deterministic and/or microscopic simulation tools and have the capabilities to use DTA and MRM to meet project objectives. We have limited use of supporting tools to assist in developing, calibrating, validating, and using the results of the models.
- d) Agency staff have full access to a wide variety of traffic analysis tools and data analytics tools from a wide variety of developers and vendors, which can be utilized based on project requirements. We have the capability to use modeling tools of different resolution and data analytic tools including statistical analysis, machine learning, and visualization in an integrated analysis and decision support environment. Supporting tools are integrated into the environment to assist in developing, calibrating, validating, and using the results of the models.

Actions to Reach the Next Level (Tabular) for Tool Capability Dimension

Sub-Dimension	Level 1 to 2	Level 2 to 3	Level 3 to 4
Tool selection	Apply tool selection guidance	Apply agency-wide and analysis type-specific criteria	Develop direct experience with a wide variety of tools from various developers and vendors
Tool availability	Obtain access to alternative tools	Obtain access to a variety of tools for most analysis types	Obtain access to a wide variety of traffic analysis and data analytics tools from a wide variety of developers

Actions to Reach the Next Level (Detailed)

- Major dimension
 - -Sub-dimension
 - Description and Importance
 - Action(s) to move from level 1 to level 2
 - Action(s) to move from level 2 to level 3
 - Action(s) to move from level 3 to level 4

25 sub-dimensions * 3 actions = 75 total actions

Sample Actions (Business Process)

 Adopt scoping procedures and policies

Sample Actions (continued)

 CAV scoping procedures and policies

Single Vehicle Multiple Vehicle Infrastructure **Point and Trajectory Data** 1 2 3 4 1 2 3 4 2 Standard Features ABM ABM 0-D 0-D Sensing Sensing Sensing **Microscopic** Estimation Estimation Estimation Prediction Prediction Prediction Control Control Control Sensing Sensing Estimation Estimation Macros copic Prediction Prediction Control Control 2 2 3 3 4 3 4 1 2 Output Collection and Visualization

ABM – activity based models API = application programming interface O-D = origin-destination

Sample Actions (Supporting Data)

- Develop and adopt data tools
- Use integrated modeling and data environment

STM = spatiotemporal matrix ARM = annual reliability matrix

Strategy Layer			
Performance Layer			
 Consumer Executive Tactical Manager Operations Manager Operator 		Real-Time	
	Decision Processes	Decision Support Systems	Operational Data Stores
Producer		Data Repositories	
 Data Analyst Transportation System Analyst 	Analytic Processes	 Data Marts Data Warehouse 	Other Agency Data
Information Technology Staff	Information	Data and	Crowdsourcing Data
37	Brocesses	Analytic Tools	
Travelers	110003503	A finally de 10015	Private Sector Vendor Data
PEOPLE LAYER	PROCESS LAYER	PLATFORM LAYER	DATA LAYER

Sample Actions (Analysis Process)

Build capability to apply DTA and MRM

- MRM = multiresolution modeling
- VC&V = verification, calibration, and validation

Sample Actions (Tool Capability)

- Increase use of DTA, MRM, and data analytics
- Adopt tool selection procedures

Sample Actions (Performance Measures)

- Adopt performance measure definitions and selection methods
- Apply integrated business intelligence and decision support

Strategic Objective: Strategic Focus:

Hadi et al. 2020

Sample Actions (Culture)

- Engage upper management
- Have extra funds available for advanced modeling
- Recognize importance of modeling advanced and emerging strategies

Sample Actions (Workforce)

Source: FHWA.

Sample Actions (Collaboration)

- Establish formal process supported by MOUs
- Harmonize regional collaboration with best practices

MOU = memorandum of understanding

Contact Information

James Colyar Federal Highway Administration Office of Operations James.Colyar@dot.gov

Dave Stanek, PE PTOE RSP1

Updates to the HCM: The 7th Edition

HCM 7TH EDITION

Highway Capacity Manual

What is it?

The HCM provides capacity analysis methods for multiple travel modes across different transportation facilities:

- Freeways and highways
- Urban streets
- Intersections and interchanges

HCM 7TH EDITION

7th Edition

What's new?

- Pedestrian delay
- CAV adjustment factors
- Two-lane highway method
- Network analysis method

The National Academies of SCIENCES • ENGINEERING • MEDICIN

Enhanced Pedestrian Volume Estimation and Evaluation Method

Research Source

NCHRP 17-87

Enhancing Pedestrian Volume Estimation and Developing HCM Pedestrian Methodologies for Safe and Sustainable Communities

HCM Chapter Updates

- Chapter 18 Urban Street Segments
- Chapter 19 Signalized Intersections
- Chapter 20 TWSC Intersections
- Chapter 30 Urban Street Segments: Supp
- Chapter 31 Signalized Intersections: Supp
- Chapter 32 SC Intersections: Supp

Uncontrolled Crossings (TWSC & Mid-block)

Current Method (HCM 6)

- LOS based on pedestrian delay
- LOS depends on:
 - Hourly traffic flow rate
 - Motorist yielding rate

Uncontrolled Crossings (TWSC & Mid-block)

New Method (HCM 7)

LOS based on pedestrian delay LOS based on percentage (dis)satisfied pedestrians

- LOS depends on:
 - Hourly traffic flow rate
 - Motorist yielding rate
 - AADT
 - Specific crossing treatments (e.g. marked crosswalk, median island, RRFB)
- Delay still calculated and sensitive to the design pedestrian
- Corrections to HCM 6 motorist yielding procedure

Uncontrolled Crossings (TWSC & Mid-block)

New Method (HCM 7)

Exhibit 20-3: LOS Criteria: Pedestrian Mode

LOS	Condition	Comments
А	P _D < 0.05	Nearly all pedestrians would be satisfied
В	$0.05 \leq P_D < 0.15$	At least 85% of pedestrians would be satisfied
С	$0.15 \leq P_D < 0.25$	Fewer than one-quarter of pedestrians would be dissatisfied
D	$0.25 \leq P_D < 0.33$	Fewer than one-third of pedestrians would be dissatisfied
Е	$0.33 \leq P_D < 0.50$	Fewer than one-half of pedestrians would be dissatisfied
F	$P_D \ge 0.50$	The majority of pedestrians would be dissatisfied

Note: P_D = proportion of pedestrians giving a "dissatisfied" rating or worse.

Signalized Crossings

Current Method (HCM 6)

- Delay estimated for single-leg, single-stage crossing
- Guidance to sum delay results for multiple-leg crossings
- LOS based on "pedestrian LOS score"
- Corner and crosswalk circulation area calculated before delay & LOS

Signalized Crossings

New Method (HCM 7)

- Delay estimated for single-leg, single-stage crossing-Delay also estimated for multiple-leg and multiple-stage crossings
- Guidance to sum delay results for multiple-leg crossings Delay calculation recognizes that second stage/leg arrival is not random
- LOS based on "pedestrian LOS score"
- Corner and crosswalk circulation area calculated before delay & LOS are optional calculation steps

Signalized Crossings

New Method (HCM 7) – Multiple-leg and multiple-stage crossings

Fehr / Peers

Urban Street

Current Method (HCM 6)

- Segment pedestrian LOS influenced by ease of crossing the urban street between signalized intersections
- Current method has little sensitivity to diversion length

(a) Divert to Nearest Boundary Intersection
Urban Street

New Method (HCM 7)

- Segment pedestrian LOS influenced by ease of crossing the urban street between signalized intersections
- Current method has little sensitivity to diversion length Increased sensitivity to diversion length

(b) Divert to Midsegment Signalized Crosswalk

Example: Uncontrolled Intersection

1,700 veh/h (peak hour), D = 0.50, AADT = 21,250, average pedestrian

Existing:

- Local yielding rate = 0%
- P(delayed crossing) = 99.7%, average delay >> 60 s
- P(dissatisfaction) = 86.2% → LOS = F

Pedestrian Level of Service						
Flow (ped/hr)	1	1				
Two-Stage Crossing	No	No				
Pedestrian Platooning	No	No				
Conflicting Vehicular Flow (veh/h)	1700	1700				
Average Delay (s)	760.6	760.6				
Prob. of Non-Delayed Crossing, Prd	0.003	0.003				
Level of Service (LOS)	F	F				

Copyright © 2022 University of Florida. All Rights Reserved.

HCS1000 TWSC Version 2022 TWSC2_A-PedCrossUnmarkedNoMedRefuge.xtw Generated: 5/11/2022 10:11:12 AM

Fehr & Peers

Example: Uncontrolled Intersection

Marked crosswalk + median island:

- Local yielding rate = 50%
- P(delayed crossing) = 76%, average delay = 6 s
- P(dissatisfaction) = $21\% \rightarrow LOS = C$

Pedestrian Level of Service						
Flow (ped/hr)	1	1				
Two-Stage Crossing	Yes	Yes				
Pedestrian Platooning	No	No				
Conflicting Vehicular Flow (veh/h)	1700	1700				
Average Delay (s)	6.0	6.0				
Prob. of Non-Delayed Crossing, Prd	0.481	0.481				
Level of Service (LOS)	с	с				

Copyright © 2022 University of Florida. All Rights Reserved.

HCS 1980 TWSC Version 2022 TWSC2_B-PedCrossMarkedMedRefuge.xtw Generated: 5/11/2022 10:12:09 AM

Fehr / Peers

Example: Uncontrolled Intersection

Marked crosswalk + median island + RRFB:

- Local yielding rate = 80%
- P(delayed crossing) = 76%, average delay = 3 s
- P(dissatisfaction) = $3\% \rightarrow LOS = A$

Pedestrian Level of Service						
Flow (ped/hr)	1	1				
Two-Stage Crossing	Yes	Yes				
Pedestrian Platooning	No	No				
Conflicting Vehicular Flow (veh/h)	1700	1700				
Average Delay (s)	2.9	2.9				
Prob. of Non-Delayed Crossing, Prd	0.670	0.670				
Level of Service (LOS)	A	A				

Copyright © 2022 University of Florida. All Rights Reserved.

HCS 100 TWSC Version 2022 TWSC2_C-PedCrossMarkedMedRefugeRRFB.xtw Generated: 5/11/2022 10:16:04 AM

Capacity Impact for Connected and Automated Vehicles (CAVs)

What are CAVs?

Automated Vehicles (AV)

Steer, accelerate, and brake with little to no human input

Connected Vehicles (CV)

Communicate with each other, traffic signals, signs, and other road items, or obtain data from the cloud

Why CAVs?

Increased safety

Greater mobility and equity

Economic and workforce development

Maximize health and environment

Efficiency

CAVs' Traffic Impact

Capacity Adjustment Factors (CAFs)

Given a market penetration rate of CAVs, what percent increase in capacity can be expected?

Service Volume Tables

Given a market penetration rate of CAVs, what hourly and/or daily service volumes are achievable for planning applications?

CAVs as NEW Content in HCM 7

Chapter 26

Freeway and Highway Segments: Supplemental

Chapter 31 Signalized Intersections: Supplemental

Chapter 33 Roundabouts: Supplemental CHAPTER 26 FREEWAY AND HIGHWAY SEGMENTS: SUPPLEMENTAL

HCM 7

CONTENTS

1. INTRODUCTION

2. STATE-SPECIFIC HEAVY-VEHICLE DEFAULT VALUES

3. TRUCK ANALYSIS USING THE MIXED-FLOW MODEL Introduction

Overview of the Methodology

- 4. ADJUSTMENTS FOR DRIVER POPULATION EFFECTS
- 5. GUIDANCE FOR FREEWAY CAPACITY ESTIMATION
 - Freeway Capacity Definitions
 - Capacity Measurement Locations
 - Capacity Estimation from Field Data

6. CONNECTED AND AUTOMATED VEHICLES

Introduction

- Concepts
- Capacity Adjustment Factors
- Service Volume Tables
- 7. FREEWAY AND MULTILANE HIGHWAY EXAMPLE PROBLEMS

Chapter 26 - Freeways

User Input

- Market Penetration (0% 100%): What % of the traffic stream is comprised of CAVs?
- Studied Conditions
 - ✓ Basic Freeway Segments
 - ✓ Merge, Diverge, and Weaving
 - ✓ Service Volume Table Daily & Hourly
- Unstudied Conditions
 - Managed Lane Segments
 - Oversaturated Conditions
 - CAV trucks

Fehr & Peers

Chapter 26 - Freeways

Capacity Adjustment Factors (CAFs)

Exhibit 26-15: Capacity Adjustment Factors for CAVs for Basic Freeway and Freeway Diverge Segments

	Adjusted Segment Capacity				
Proportion of CAVs in Traffic Stream	2,400 pc/h/ln	2,100 pc/h/ln	1,800 pc/h/ln		
0	1.00	1.00	1.00		
20	1.02	1.02	1.15		
40	1.07	1.10	1.27		
60	1.13	. 1.25	1.40		
80	1.22	1.37	1.60		
100	1.33	1.52	1.78		

Fehr / Peers

Chapter 26 - Freeways

Service Volume Table

Exhibit 26-18: Daily Maximum Service Volumes for Basic Freeway Segments with CAV Presence (2-way veh/day/In)

			Proportion of CAVs in Traffic Stream						
Area Type	Terrain	0%	20%	40%	60%	80%	100%		
Urban	Level	19,900	20,500	21,800	24,600	26,800	29,700		
Urban	Rolling	19,000	19,900	21,400	24,500	26,800	29,700		
Rural	Level	16,800	17,900	19,300	22,000	24,400	26,800		
Rural	Rolling	15,200	17,200	19,100	21,600	24,400	26,800		

Chapter 31 – Signalized Intersections

User Input

- Market Penetration (0% 100%): What % of the traffic stream is comprised of CAVs?
- Studied Conditions
 - ✓ Thru Movements
 - ✓ Protected Turns
 - ✓ Permitted Left-Turns

Chapter 31 – Signalized Intersections

Capacity Adjustment

- Due to the reduced headways as a result of CAV presence, the saturation flow rate increases
 - ✓ Thru Movements
 - ✓ Protected Turns
 - ✓ Permitted Left-Turns

— Signalized Thru Movements

Exhibit 31-64: Base Saturation Flow Rates for CAVs for Through Movements at Signalized Intersections

Proportion of CAVs in Traffic Stream	Base Saturation Flow Rate (pc/h/ln)
0	1,900
20	2,000
40	2,150
60	2,250
80	2,550
100	2,900

Chapter 31 – Signalized Intersections

Service Volume Table

Exhibit 31-67: Illustrative Generalized Servic	e Volume LOS E Thresholds for
Signalized Intersections with CAV Presence	(veh/h)

Through Movement a/C No. of Through		Proportion of CAVs in Traffic Stream						
Ratio	Lanes	0	20	40	60	80	100	
	1	800	840	910	950	1,070	1,220	
0.40	2	1,550	1,630	1,750	1,840	2,080	2,370	
	3	2,000	2,110	2,260	2,370	2,680	3,050	
	1	910	960	1,030	1,080	1,220	1,390	
0.45	2	1,740	1,830	1,970	2,060	2,340	2,660	
	3	2,250	2,370	2,550	2,660	3,020	3,430	
	1	1,020	1,070	1,150	1,210	1,370	1,560	
0.50	2	1,930	2,030	2,180	2,290	2,590	2,950	
	3	2,500	2,630	2,830	2,960	3,360	3,820	

Chapter 33 – Roundabouts

Exhibit 33-12: Roundabout Entry Lane Capacity Model Parameters (without CAVs)

Entry Lane Type	Α	В
One-lane entry conflicted by one circulating lane	1,380	1.02×10 ⁻³
Two-lane entry conflicted by one circulating lane (both entry lanes)	1,420	0.91×10 ⁻³
One-lane entry conflicted by two circulating lanes	1,420	0.85×10 ⁻³
Two-lane entry conflicting by two circulating lanes (right entry lane)	1,420	0.85×10 ⁻³
Two-lane entry conflicting by two circulating lanes (left entry lane)	1,350	0.92×10 ⁻³

Equation 33-1:

$$c_{e,pce} = A e^{-B v_{c,pce}}$$

 $v_{c,pce}$ = conflicting flow rate (pc/h).

	<u>La</u>	<u>ne</u>	<u>Lan</u>	es ^a	Lai <u>Bo</u> Lan	ne, o <u>th</u> iesª	Lan <u>Left</u>	ies, Lane	Lan <u>Right</u>	ies, <u>Lane</u>
	f _A	f _B	f _A	f _B	f _A	f _B	f _A	f _B	f _A	f _B
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1.05	0.99	1.03	0.99	1.05	0.99	1.03	0.99	1.05	0.96
40	1.12	0.97	1.08	0.96	1.12	0.97	1.08	0.96	1.12	0.93
60	1.22	0.94	1.18	0.92	1.22	0.94	1.18	0.92	1.20	0.87
80	1.29	0.90	1.28	0.89	1.29	0.90	1.28	0.89	1.27	0.84
100	1.35	0.85	1.38	0.85	1.35	0.85	1.38	0.85	1.34	0.80

Equation 33-2:

$$c_{e,adj,pce} = f_A A e^{-f_B B v_{c,pce}}$$

 $v_{c,pce}$ = conflicting flow rate (pc/h).

User Input

- Market Penetration (0% 100%): What % of the traffic stream is comprised of CAVs?
- Studied Conditions
 - ✓ One-lane roundabout
 - ✓ Two-lane roundabout

Questions to Think About

Given that CAV technology and regulation is still in development, assumptions necessarily have to be made when estimating CAVs' potential capacity benefit.

- Legal or regulatory requirements
- Liability concerns
- Passenger lack of trust concerns
- Mechanical differences

Two-Lane Highway Analysis Revised Procedure

FEHR & PEERS

Introduction

Why is two-lane highway analysis important?

- A vast majority of highways in the US are two-lane
- Traffic increases on facilities due to development and shipping
- Widening projects are expensive

TWO-LANE HIGHWAY ANALYSIS HCM 7TH EDITION

General Characteristics

What are key factors to think about for two-lane highways?

- Higher interaction between vehicles traveling in the same direction (Platooning)
- Maintain desired speed passing slower vehicles

Segmentation

HCM 6 th Methodology	HCM 7 th Methodology
None - % passing zones and length of passing lanes are provided	Segment Types: Passing Constrained, Passing Zone, Passing/Climbing Lane

Segment by – homogeneous traffic demand, grade, lane and shoulder widths, posted speed limit.

Service Measures

HCM 6 th Methodology	HCM 7 th Methodology			
Average Travel Speed (ATS) – mi/h	Follower Density - followers/mi/ln			
Percent Time Spent Following (PTSF) - %	Number of vehicles in follower state per mile per			
Percent Free Flow Speed (PFFS)- %	lane.			

			Class II Class III			Follower Densit	<u>y (followers/mi/ln)</u>	
	Class I Highways		Highways Highways			Higher-Speed Highways	Lower-Speed Highways	
LOS	ATS (mi/h)	PTSF (%)	PTSF (%)	PFFS (%)	LOS	Posted Speed Limit ≥ 50 mi/h	Posted Speed Limit < 50 mi/h	
A	>55	≤35	≤40	>91.7	A	≤ 2.0	≤ 2.5	
В	>50-55	>35-50	>40-55	>83.3-91.7	в	> 2.0 - 4.0	> 2.5 - 5.0	
С	>45-50	>50-65	>55-70	>75.0-83.3	С	> 4.0 - 8.0	> 5.0 - 10.0	
D	>40-45	>65-80	>70-85	>66.7-75.0	D	> 8.0 - 12.0	> 10.0 - 15.0	
E	≤40	>80	>85	≤66.7	E	> 12.0	> 15.0	
F		Demand exce	eds capacity		F	Demand exceeds capacity		

Note: For Class I highways, LOS is determined by the worse of ATS-based LOS and PTSF-based LOS.

Follower Density

	<u>Follower Density (followers/mi/ln)</u>					
	Higher-Speed Highways	Lower-Speed Highways				
LOS	Posted Speed Limit ≥ 50 mi/h	Posted Speed Limit < 50 mi/h				
Α	≤ 2.0	≤ 2.5				
В	> 2.0 - 4.0	> 2.5 - 5.0				
С	> 4.0 - 8.0	> 5.0 - 10.0				
D	> 8.0 - 12.0	> 10.0 - 15.0				
E	> 12.0	> 15.0				
F	Demand exceeds capacity					

Exhibit 15-4: Follower Density Versus Directional Flow Rate

Classification

HCM 6 th Methodology	HCM 7 th Methodology
Class I, Class II, Class III	Two different sets of service measure thresholds based on posted speed limit

Class I - High speeds, commuter routes, intercity routes, serves long trips

Class II - Not expected to travel high speed, scenic routes, serves shorter trips

Class III - Moderately developed area, serves local traffic mixes

(a) Examples of Class I Two-Lane Highways

(b) Examples of Class II Two-Lane Highways

Fehr / Peers

Heavy Vehicles

HC	M 6 th Methodology	HCM 7 th Methodology				
•	Passenger Car Equivalents (PCEs); thus, flow rate in pc/h PCEs differ by service measure (Speed, PTSF) Not a function of % trucks Originally iterative approach due to units Do not properly account for moderate to steep grades	•	% HV as a direct input for performance measures Flow rate as veh/h			

Flow Rate per Lane (veh/hr)

Alignment

	HCM 6 th Methodology	HCM 7th Methodology
Vertical	 PCEs for level, rolling, specific Separate grade adjustment factor for both ATS and PTSF 	 5 vertical classifications on segment length and slope % (both upgrade and downgrade)
Horizontal	Not considered	 5 horizontal classifications, based on curve radius and superelevation %

				Saama	nt Por	ont Gr	ada (%)		
Segment Length (mi)	≤1	>1 ≤2	>2 ≤3	<u>segne</u> >3 ≤4	<u>>4</u> ≤5	>5 ≤6	<u>aue (76</u> ≥6 ≤7	≥7 ≤8	>8 ≤9	>9
≤0.1	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)	2 (1)	2 (2)	2 (2)
>0.1 ≤0.2	1 (1)	1 (1)	1 (1)	1 (1)	2 (1)	2 (2)	2 (2)	3 (2)	3 (3)	3 (3)
>0.2 ≤0.3	1 (1)	1 (1)	1 (1)	2 (1)	2 (2)	3 (2)	3 (3)	4 (3)	4 (4)	5 (5)
>0.3 ≤0.4	1 (1)	1 (1)	2 (1)	2 (2)	3 (2)	3 (3)	4 (4)	5 (4)	5 (5)	5 (5)
>0.4 ≤0.5	1 (1)	1 (1)	2 (1)	2 (2)	3 (3)	4 (3)	5 (4)	5 (5)	5 (5)	5 (5)
>0.5 ≤0.6	1 (1)	1 (1)	2 (1)	3 (2)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)
>0.6 ≤0.7	1 (1)	1 (1)	2 (1)	3 (2)	4 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)
>0.7 ≤0.8	1 (1)	1 (1)	2 (1)	3 (3)	4 (4)	5 (4)	5 (5)	5 (5)	5 (5)	5 (5)
>0.8 ≤0.9	1 (1)	1 (1)	2 (1)	3 (3)	4 (4)	5 (5)	5 (5)	5 (5)	5 (5)	5 (5)

Exhibit 15-11: Classifications for Vertical Alignment (Downgrades in Parentheses)

Exhibit 15-22: Horizontal Alignment Classifications

		Superelevation (%)									
Radius (ft)	<1	≥1 <2	≥2 <3	≥3 <4	≥4 <5	≥5 <6	≥6 <7	≥7 <8	≥8 <9	≥9 <10	≥10
<300	5	5	5	5	5	5	5	5	5	5	5
300-449	4	4	4	4	4	4	4	4	4	4	4
450599	4	3	3	3	3	3	3	3	3	3	3
600-749	3	3	3	3	3	3	2	2	2	2	2
750-899	2	2	2	2	2	2	2	2	2	2	2
900-1,049	2	2	2	2	2	2	2	2	1	1	1
1,050-1,199	2	2	2	2	1	1	1	1	1	1	1
1,200–1,349	2	2	1	1	1	1	1	1	1	1	1
1,350–1,499	1	1	1	1	1	1	1	1	1	1	—
1,500–1,649	1	1	1	1	1	1	1	1	—	_	—
1,650–1,799	1	1	1	1	1	1	—	—	_	_	_
1,800–1,949	1	1	1	1	1	—	_	—	_	—	_
1,950-2,099	1	1	1	1	—	_	_	—	_	—	_
2,100-2,249	1	1	1	—	_	—	_	—	_	—	_
2,250-2,399	1	1	-	_	_	—	—	—	—	_	—
2,400-2,549	1	—	—	_	—	—	—	_	—	_	—
≥2550	_	_	_	_	_	_	_	_	_	_	_

section.

Fehr & Peers

Capacity

HCM 6 th Methodology	HCM 7 th Methodology				
• 1,700 pc/h	 Passing Zone and Passing Constrained Segments 1,700 veh/h Passing Lane Segment Lower values due to merging friction Function of %HV and vertical classification 				

Exhibit 15-5: Maximum Flow Rates for Passing Lane Segments

	Maximum Flow Rate (veh/h) by Vertical Class							
Heavy Vehicle Percentage (%)	1	2	3	4	5			
< 5	1,500	1,500	1,500	1,500	1,500			
≥ 5 < 10	1,500	1,500	1,500	1,500	1,400			
≥ 10 < 15	1,400	1,400	1,400	1,300	1,300			
≥ 15 < 20	1,300	1,300	1,300	1,300	1,200			
≥ 20 < 25	1,300	1,300	1,300	1,200	1,100			
≥ 25	1,100	1,100	1,100	1,100	1,100			

Note: Capacity is governed by merge point at end of passing lane segment.

Base Free-Flow Speed

нс	M 6 th Methodology	HCM 7 th Methodology				
•	No specific guidance	•	Can be estimated based on posted speed			

Equation 15-2:

 $BFFS = 1.14 imes S_{pl}$

Fehr / Peers

2+1 Configuration

HCM 6 th Methodology	HCM 7 th Methodology				
Not considered	Initial material for estimating performance				

Facility Scope

HCM 6 th Methodology			HCM 7 th Methodology				
•	Not considered Essentially single segment analysis, but with additional step for adjusting performance due to upstream passing lane	•	Facility LOS based on length-weighted aggregation of segment follower density values				

Equation 15-39:

$$FD_F = rac{\displaystyle \sum_{i=1}^n FD_i imes L_i}{\displaystyle \sum_{i=1}^n L_i}$$

Methodology Ease of Use Issues

- None of the lookup tables require interpolation: HCM 6th tables, many adjustment factors required interpolation (for some 2-way and 3 way)
- Treating trucks explicitly, rather than through PCE values
- No separate grade adjustment factor, which also varied by service measure
- No '%No-Passing Zones' input; Location and length of passing zones explicitly accounted for
- Elimination of the PTSF measure, which was difficult if not impossible to measure accurately in the field

New Network Analysis Method NETWORK ANALYSIS METHOD IN HCM 7TH EDITION

Network Analysis Objective

• Evaluate performance measures of corridors with freeways and arterial facilities

Fehr & Peers

NETWORK ANALYSIS METHOD IN HCM 7TH EDITION

HCM 7th Edition Chapter 38

- Evaluate spillback between arterials and freeways
- Estimate travel time across facilities
- Conduct lane-by-lane analysis for freeways

Analyzing Corridor with Freeways and Streets Sample Network Analysis

How to analyze a trip from D to H?

• HCM 6 current method – analyze three different facilities:

Analyzing Corridor with Freeways and Streets New Method

- HCM 7 New Method Integrates analyses and overcomes limitations:
 - Travel time as common performance measure
 - Congestion propagation at interchanges (queue spillback)
 - Lane selection at freeway depending on O-D
 - Travel time at freeway ramps

Queue Spillback Analysis Freeway On-ramps

Occurs when:

- Insufficient capacity at:
 - Freeway merge*
 - Ramp meter or
 - Ramp roadway
- Insufficient storage length at the on-ramp;

 * Reduced merge capacity only for oversaturated conditions at the freeway (LOS F)

User Inputs:

- Available queue storage at the on-ramp (ft)
- Ramp metering rate, if applicable (veh/h)
- Intersection and freeway inputs per current HCM

Queue Spillback Analysis Freeway Off-ramps

Freeway impact is more localized close to exit and spreads further upstream:

Capacity Adjustment Factors – Modeling framework:

Queue Spillback Analysis Freeway Off-ramps

User Inputs:

• Available queue storage at the off-ramp (ft)

• Queue spillback regime Queue extends through one or two mainline lanes?

New Lane-by-lane Analysis Freeways

- Instrumental to analyze O-D based travel times affects lane choice
- Estimation of capacity and speeds for individual lanes
- Flow distribution for individual lanes as function of:
 - Segment and ramp flow rate;
 - Percent grade;
 - Nearby ramps;
 - Number of lanes

Fehr & Peers

Analyzing Corridor with Freeways and Streets Sample Network Analysis

HCM 7 – New method

Addressing Long Routes TT > 15 mins

Facility Segment Travel time (s) Segment Travel time (s) Cumulative Cumulative Segment ID Analysis Analysis Analysis Analysis travel time (s) travel time (s) Name Туре Period 1 Period 2 Period 1 Period 2 SW 37th - SW 40th Archer On-ramp Urban Rd. WB Street SW 40th - I-75 WB travel time On-ramp Lane selection Freeway I-75 NB Off-ramp -26-Off-ramp Urban NW 39th I-75 NB - NW 95th Street Ave. EB travel time Total travel time (s):

Current methods

HCM 6

New method

HCM 7

Fehr & Peers

HCS Tools

Update: Lane-by-lane analysis

🖡 Facilities2-Oversaturated.xu/*-HCS Freeways – 🗆 🗙									🗗 Fac	ilities2+Oversaturated.xuf* - H	HCS Freeways											-		×
=	≡ START GENERAL SEGMENTS DETAILS RESULTS REPORT										SEGME	NTS DET	AILS RESU	LTS REPO	DRT								(i
	Project Properties									Segment													^	
[€ Back	Analyst				Jurisdiction					None	None Type Length, ft Flow Segment ID Speed Lanes	Basic 5280 1 3	Merge Bas 1500 228 2 3	Basic Diverge	Diverge	Basic 5280 5	Heaving Basic 2640 5280 6 7	Merge	Overlap	Diverge	ge Basic 5280 11			
	Agency				Time Analyzed					O Flow				3	4			8 9 3 3	9	10				
	Analysis Year		2021		Date	12/1/2021				O Speed			3	3 3		3	4 3		3	3	3	3	- 11	
	Project Desci	ription	Chapter 25: Example Problem 2		Units	U.S. Customary				O Density														
	Facility Global Inputs									O LOS													- 11	
	Jam Density.	pc/mi/ln	190.0 % 7		Area Type	Urban 1.000	~			► II								\frown						
	Queue Disch	arge Capacity Drop			Demand Factor																			
	Managed La	ne			Mixed Flow Model					East Slow														
	Lane-By-Lan	e Analysis	V																					
	La Segments Global Inputs									Geometric Data														
	Freeway Lane	Freeway Lanes 3			Ramp Lanes				G	Number of Lanes			3 60.0			Ramp Lanes Ramp Free Flow Speed, mi/h				1 40.0		G	2	
	Freeway Free Flow Speed, mi/		/5.4		Ramp Free Flow Speed, mi/h	35.0		2	E	Free Flow Speed, mi/h	h													
	k Freeway Terr	ain Type	Level	Level		Level	~	Next	Back	Freeway Length, ft			1500				Ramp Side			Right		v		Next
	Freeway Peal	k Hour Factor	0.94		Ramp Peak Hour Factor	0.94				Freeway Terrain Type			Level			Ramp Terrain Type			Level		۷	~		
	Freeway Tota	al Trucks, %	0.00		Ramp Total Trucks, %	2.25				Freeway Grade, %			\$ 0.00			Ramp Grade, %								
	Driver Popula	ation	All Familiar		Weather Type	Non-Severe Weather	~			Freeway Grade Length	h, mi					Ramp Grade Length, mi								
					Apply Global Inputs				Measured FFS			.			Highway or C-D Roadway Length of First Accel. Lane (LA), ft Length of Second Accel. Lane (LA2), ft									
									Right Side Clearance, 1	ft								t	500	00				
										Lane Width, ft								32), ft						
										Total Ramp Density, ra	amps/mi													
										Managed Lane														
													Demand Data											
										Freeway Demand, veh	n∕h		5001			Mer	ge Demand, veh	ı/h		450			~	
			And Dessent of				LICEN Francisco Marcino 2022 (C	<		P											>	-
Copyright to 2022 University of Florida. All Hights Reserved. HCS** Freeways Version 2022 (USC)								Copyr	ight © 2022 Ohiversity of Flor	rida. An Rights	neserved.										ics meeways v	ersion 2022 (C	(9C)	

Limitation: Doesn't generate the total travel time directly

HCM 7TH EDITION

Resources

Where can I find it?

HCM 7 can be purchased from TRB

- Electronic and print versions
- Volume 4 is online: <u>hcmvolume4.org</u>
- HCQS TRB Committee: hcqstrb.org

Software applications

- HCS 2022
- Vistro 2022

HCM 7TH EDITION

Q&A

Presenter:

Dave Stanek d.stanek@fehrandpeers.com

Contributors:

Seishi Yamagata Lufeng Lin Mae Tamayo Zoey Zhang

