

Volunteer Network of Professionals Working Together to Support, Promote, and Improve Best Practices in the Application of Traffic Simulation and Capacity Analysis

7/15/2021 Educational Meeting #9

Meeting Agenda

Welcome and SimCap Updates

Simulation in the '90s – Advancement of the Field

Integration of Highway Safety Manual Methods into TransModeler

Open Discussion

ITE SimCap Committee

- Held ITE webinar (May 18)
 - Featured simulation case studies
- Upcoming session at 2021 ITE Annual Meeting (Jul. 28, 12:30–2:00p CST)
 - Traffic Analysis, Modeling, and Simulation Cornucopia
- Upcoming meeting (Aug. 4, 3:00– 4:30p CST)
 - Joint meeting with SimSub
 - No registration; <u>use link</u>

TRB Joint Simulation Subcommittee (SimSub)

Held Summer Liaison Meeting (Jun. 25)

- Established task groups, discussed activities
- Vendors provided updates
- Meeting minutes coming soon
- Upcoming NOCoE webinar (Sept.)
 - Role and benefit of traffic simulation in TSMO
 - Speakers needed!
- Subscribe to e-mail listserv

Local Updates

- FHWA Louisiana Division Office
- LaDOTD
- Louisiana MPOs/Planning Commissions
- Other

Contact Information

6

Christopher Melson, P.E. LTAP Program Manager (225) 767-9118 cmelson1@lsu.edu

David Hale Leidos

Simulation in the '90s – Advancement of the Field

Simulation in the '90s

Advancement of the Field

David K. Hale, July 15th 2021

Public and Private Sector Competition

- Expansion of public sector tools:
 - Integration of Netsim and Fresim into Corsim.
 - PASSER II, PASSER III, TRANSYT-7F.
 - Highway Capacity Software (HCS).
 - Arterial Analysis Package (AAP).
- Emergence of private sector tools:
 - Synchro and SimTraffic.
 - TEAPAC.
 - Vissim.

Influence of the Highway Capacity Manual (HCM)

- People began comparing HCM results to simulation results.
- Some simulation tools adopted HCM output measures.
 - Level of service.
 - Control delay.
 - Stop delay.

http://www.texite.org/houston/HCM-HISTORY.pdf

- Researchers updated HCM models using simulation output.
- Comparisons generated new research and development.
 - Microsimulation trajectory analysis (Courage, Dowling).
 - FHWA Traffic Analysis Toolbox (Halkias).

3

Early Simulation Guidance

Simulation and Traffic Signal Timing

- SigCinema by KLD Associates.
 - Isolated intersections in Netsim.
 - Animation of optimized timings.
- PASSER by Texas Transportation Institute (TTI).
 - Macroscopic analysis, no platoon dispersion.
 - LEART simulation/animation.
- TRANSYT-7F by University of Florida and McTrans.
 - Macroscopic simulation with platoon dispersion.
 - Step-wise simulation in the late 1990's.
- Synchro by Trafficware.
 - Macroscopic analysis with platoon dispersion.
 - Animation of optimized timings in SimTraffic.

SC .

Data Entry via Link-Node Diagram

- Import a bitmap background (aerial photo).
- Drag and drop links and nodes.
- Right-click on links and nodes to edit their properties.
- Moving vehicle animation within the bitmap background.
- Early examples: Synchro and ITRAF.

Early Work on Dynamic Traffic Assignment (DTA)

- Improved computing power made DTA more practical.
- Research and development from Hani Mahmassani.
- ▶ 1990's DTA work mostly confined to academia.
- Moving vehicle animation in DYNASMART-P.
- ► FHWA support for DYNASMART-P.
- Birth of DTALite and Dynus-T.
- Mesoscopic simulation.

Early Work on Regional Microsimulation

- TRANSIMS: a public sector tool.
 - Regional agent-based microsimulation and DTA.
 - ▶ Hot topic at TRB in the 1990's, not adopted by industry.
 - Set the stage for meso-simulation versus microsimulation.

Tom Creasey Caliper Corporation

Integration of Highway Safety Manual Methods into TransModeler

Integration of Safety Analysis Tools into Microsimulation Software

Tom Creasey, PE, PhD Caliper Corporation

"You can't predict accidents."

- Former professor, advisor, and mentor of mine
- Circa early 1980's

Highway Safety Manual

- 1st Edition in 2010
- Part C Predictive Methods
- 2014 supplement included:
 - Chapter 18 Freeways
 - Chapter 19 Ramps

HSM Prediction Methods – Basic Structure

$$N = N_{base}^{\text{SPF}} * CMF * C$$

N: Predicted average crash frequency for specific site, type, etc.
 N_{base}: Predicted average crash frequency for base conditions as predicted by Safety Performance Function (SPF)

- CMF: Crash Modification Factor(s)
- C: Calibration Factor

Safety Performance Functions (SPFs)

Regression equations that estimate average crash frequency for specific site type

HSM Crash Prediction Methodology

Safety Analysis Tools

IHSDM

- Highway Safety Software
- Customized Spreadsheets

Interactive Highway Safety Design Model (IHSDM)

Economic Analyses									
Eile Edit Help									
Project 1 Select a module view:	Horizontal	Alignment							
WIND THE SP1	This table (- contains data that define th	e horizontal alignment of	f the highway center	ine Horizont:	al alianment e	lomont types	are Tangent, Cunve (sim	le curve) Spiral (
Example Freeway	a Tangent	and a Curve or part of a Sr	piral-Spiral pair) and Defl	ection (horizontal de	flection angle	without horiz	ontal curve)	are rangent, ourve (anny	ie cuive), opilai (
PennDOT I-70-Alt-2A									
PA I-70 Alt 2A training									
- Vertical Alignment				_					
- SR 3010 (v1)									
E-S I-70 Alternative 2A (v1)	Туре	Start Loc. (Sta. ft)	End Loc. (Sta. ft)	urve Radius (ft)	Direction of	Curve Side	Radius	Deflection	Add
V11 Evaluation 1 (Crash Prediction)				C	Curve	of Road	Position	Angle (deg)	
Markeys Rd (v1)									. <u>E</u> dit
- SR 3037 Waltz Mill Rd (v1)	Traffic	646+00.000	648+22.460	5 050 001 -	.a. 1	Both Roadbe			particular second
- SR 3014 (v1)	Curve	662+02 160	052+83.100	5,050.00 Le	aht F	Both Roadbe			Delete.
High Volume Section - High Volume Section	Tangent	657+43.860	670+56.040	5,050.00 Ki	igint c	Both Roadbe			
H Interchange I-70 and SR 3037 ✓ Weaving Section	Spiral	670+56.040	672+61.040	2 350 00 Ri	iaht F	Both Roadbe	End		
→ Intersection SR 3010 and Huntington Rd (v1	Curve	672+61.040	700+07.090	2.350.00 Ri	iaht E	Both Roadbe			Validat
Intersection 3010 and Markey's Rd (v1) Outside Barrier	Spiral	700+07.090	702+12.090	2,350.00 Ri	ight E	Both Roadbe	Start		
Clear Zone	Tangent	702+12.090	728+80.850		E	Both Roadbe			Hala
Viser Defined CMF	Curve	728+80.850	734+39.190	3,765.83 Le	eft E	Both Roadbe			Telb
History Operations	Curve	734+39.190	749+91.350	4,780.00 Le	eft E	Both Roadbe			
ngnway Operations	Tangent	749+91.350	751+00.000		E	Both Roadbe			
New Evaluation		Cantadiaa	and the states of						
Edit Highway		Centerline	stationing						
Copy Network									
Show Highway X <u>M</u> L									
Export Network									
View <u>H</u> ighway									
View <u>G</u> raph									
Properties									

Source: FHWA/AASHTO

Interactive Highway Safety Design Model (IHSDM)

Crash Prediction Evalu	uation Repo		• - • ×							
) File C:/IHSDM2018/users/tom	/Projects_V5/p3/h2/e1/evaluation.1	.report.htm#_tb 🛧 🧿 🛐 🗉 🖸 🕐 🗯 🕦 🗄							
Apps 📙 Caliper	📙 Faith 🛄 FHWA 🛄 Financial	🛄 fte 🛄 HCQSC 🛄 ITE 📕	Local Governments >> Cother bookmarks							
Interactive	Highway Safety	y Design Model	Table of Contents							
Crash Pred Version v15.0.0 May 19, 2021	(Oct 31, 2019)	Report Overview Disclaimer Regarding Crash Prediction Method Section Types Section 1 Evaluation								
			List of Tables							
The Interactive Highwa sponsorship of the Der	Disclaimer ay Design Model (IHSDM) softwa partment of Transportation in the	re is disseminated under the interest of information jilty for its content or use	Observed Crashes Used in the Evaluation (Section 1) Evaluation Freeway - Homogeneous Segments (Section 1) Evaluation Freeway - Speed Change							
sible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)	ecification, or regulation.	Lanes (Speed Change) Crash Highway Freeway - Homogeneous							
0.3714	0.9416	cumentation only because	Segments (Section 1)							
7.6406	16.6265	are.	Crash Highway Freeway - Speed							
3.0011	8.0517	of Remedies	Expected Freeway Crash Rates and							
0.1835	0.4943	of any kind-either	Frequencies Summary (Section 1)							
0.9290	2.4672	ties of merchantability and that the functions contained	Expected Freeway Speed Change Lane							
2.4169	5.4525	hat the operation of the	Crash Rates and Frequencies							
1.3871	3.3651		Summary (Speed Change)							
2.8412	6.9090	-user for any damages or sequential damages rising	Expected Crash Frequencies and Rates							
3.4728	7.1447	e organizations have been	(Section 1)							
3.6923	6.4784	m by any other party.	Expected Crash Frequencies and Rates							
0.5043	0.8901		by Freeway Speed Change Lane							
2.7524	6.7732	voluntary basis. In exchange	(Speed Change)							
2.6553	6.3124	ighway Administration	Expected Crash Frequencies and Rates							
1.2595	3.1568	e or other liability that may	(Section 1)							
1.0976	3.3897	liation and testing of the le Federal Government	Predicted Crash Frequencies by Year							

is held harmlass provision

Table 14. Expected Crash Severity by Freeway Segment (Section

Seg. No.	Fatal (K) Crashes (crashes)	Incapacitating Injury (A) Crashes (crashes)	Non-Incapacitating Injury (B) Crashes (crashes)	Possible Injury (C) Crashes (crashes)	No Injury (O) Crashes (crashes)
1	0.0152	0.0377	0.2196	0.3714	0.9416
3	0.3360	0.8462	4.7352	7.6406	16.6265
4	0.1277	0.3197	1.8213	3.0011	8.0517
5	0.0075	0.0186	0.1085	0.1835	0.4943
6	0.0287	0.0730	0.4228	0.9290	2.4672
8	0.0924	0.2197	1.2085	2.4169	5.4525
9	0.0468	0.1090	0.6411	1.3871	3.3651
10	0.0879	0.2232	1.2931	2.8412	6.9090
11	0.0797	0.2088	1.4546	3.4728	7.1447
12	0.1046	0.2550	1.6941	3.6923	6.4784
14	0.0127	0.0303	0.2147	0.5043	0.8901
16	0.1049	0.2513	1.6611	2.7524	6.7732
17	0.1070	0.2426	1.6640	2.6553	6.3124
18	0.0507	0.1151	0.7893	1.2595	3.1568
19	0.0442	0.1003	0.6878	1.0976	3.3897
Total	1.2459	3.0504	18.6157	34.2050	78.4533

Highway Safety Software (McTrans)

Hig	hway Sa	afety Softw	vare Fr	reew	ay Segi	ment Report						
Project Information												
nalyst			Da	Date			12/19/2017					
urisdiction			Ar	Analysis Year			2011					
roject Description	HSM Chap Problem 5	ter 18: Sample	Se	ection	Number		1					
nput Data												
ength of Segment (mi)		0.750	N	umbe	r of Throug	h Lanes		6				
lumber of Curves		0 Clear Zone Width (ft) 30 12.0 Median Width (ft) 40						30				
ane Width (ft)		12.0	м	ledian	Width (ft)			40				
utside Shoulder Width (ft)		10	In	iside S	houlder Wi	idth (ft)	6					
roportion of Rumble Strips (Outside S	Shoulder)	0.000	Pr	roport	ion of Rum	ble Strips (Inside Sh	E Report					
arrier in Median		No	Ba	arrier o	on Roadsid	e	No					
reeway AADT (veh/day)		120000	Pr	roport	ion of AAD	T (High-volume)	0.643					
	Trav	el in Increasing	Milepost	t Direc	tion	Travel in Decreasing Milepost Direction						
	Entrance R	lamp	Exit Ram	mp Entrance Ramp			1	Exit Ramp				
istance to Upstream Ramp (mi)	0.500		0.100			0.850	(0.100				
ADT (veh/day)	8000		7675			6750	7150					
resence of Type B Weave	None	None				None	750 7150 one					
ength of Weave (mi)	-					-						
ength of Weave in Segment (mi)	-					-						
rash Modification Factors												
		Combin	ed CMF			Ca	alibration Factor					
	Fatal a	and Injury	Property	y Dam	age Only	Fatal and Injur	у	Property Damage Only				
Iultiple Vehicle	1.354		1.291			1.00	:	1.00				
ingle Vehicle	0.939		0.716			1.00	:	1.00				
redicted Roadway Section	n Crashe	s										
				Pre	edicted Cra	sh Frequency						
Crash Severity		Multiple Vehic	le		Sing	gle Vehicle		Total				
atal and Injury (FI)	4.812			1	.988		6.800					
roperty Damage Only (PDO)	11.329			3	.660		14.989					
otal	16.141			5	.648		21.789					

Customized Spreadsheet Tools

FCAT	Proje	ct Safety Pe	erformance F	Report			50.00	FRA 270-9	9.15 Existing Cor	nditions Crash F	requency	Histogram
Economic Crash Analysis Tool		General I	nformation									
Project Name	SUM 8		Contact Email				45.00					
Project Description	Design-Build Project		Contact Phone									
Reference Number	PID 106589		Date Performed				40.00					
Analyst			Analysis Year		Existing Conditions							
Agency/Company							35.00					
Sum	mary of Anticipated S	afety Performa	ince of the Pro	ject (average (crashes/year)		30.00					
180.0				152.4 154.8	Existing Predicte	Conditions d Average	25.00					
120.0			109.6 114.1		Crash F	requency	20.00					
100.0					■ Existing	Conditions						
60.0					Expecte Crash F	d Average requency	15.00		_	-		
40.0	17.6 16.7	19.9 18.9					10.00				╶╢┻╢	
20.0 5.2 5.0			4.6		2.4 Existing Potentia	Condtions I for Safety						
-20.0 KA -0.	2 B -0.9	c -1.0	0	Total	Improve	ment	5.00		▖▋▋▋▃			
							88 3 8 1 8 1 8 1 9 00.0	338 837 483 482 482		NBT 481 581 482 482	erts loto	Run -
	Project Su	mmary Results	(Without Anim	al Crashes)		Total	d ma	N dma 7 dma 7 dma	amp ^h amp	amp n amp n amp n	-Rob y-Sc	Ceme den R yden
N _{predicted} - Existing Cond	itions	5.2384	17.6227	19.9360	109.5636	152.3607	etery R etery R	ery Ra stery Ra etery Ru etery Ru	tery Ra etery Ru Tuttle F Tuttle R	Luttle R uttle Ra Luttle Ra uttle Ra	SB SDC emeter	dson - (SB Hay tle - Hay
N _{expected} - Existing Cond	litions	4.9924	16.7458	18.9137	114.1256	154.7775	E E O O ■Poter	al for Safety Improvement	Segment Predicted	Frequency ⊌Interse	ection Predicted F	Endquency B
N _{potential} for improvement - Ex	kisting Conditions	-0.2460	-0.8769	-1.0223	4.5620	2.4168						v)

Source: Ohio Department of Transportation

Expected Frequency

"Can you add this to your existing software?"

Challenges

- We've never added this type of feature before.
- Microsimulation What to use and what not to use?
- Auto-identified vs. user input?
- What should the graphical user interface (GUI) look like?
- Agency customization?
 - Calibration factors
 - CMFs

Traffic Simulation Software

- Severity Distributions

Benefits

- One tool, multiple purposes
- Take advantage of existing GIS functionality
 - Roadway geometry
 - Automated site classification
 - Other spatially referenced data
- Alternatives analyses → transferability of data

Project Identification

Project Identification

Graphical User Interface

- Project Information
- Selected Sites
- Crash Data

- Traffic Data
- Alignment Data (Longitudinal)
- Cross Section Data (Transverse)

Current Analysis US33	NB ffic Data Alignment Data Cross Section Data	~ <u>× × × ×</u>	Freeway ana	llysis		
e Name	Site Type	Ramp Type	Ramp Side	Length (mi)	Lanes	
US HWY 42	Freeway Segment			3.981	4	
US HWY 42	Speed-Change Lane (ex)	Exit	Right	0.139	4	
m RAMP	Freeway Segment			0.391	4	
m US HWY 42	Speed-Change Lane (en)	Entrance	Right	0.088	4	
m US HWY 42	Freeway Segment			3.545	4	
US HWY 42 N & US HWY 42	Speed-Change Lane (ex)	Exit	Right	0.143	4	
m US HWY 42 N & US HWY 42	Speed-Change Lane (en)	Entrance	Right	0.146	4	
m US HWY 42 N & US HWY 42	Speed-Change Lane (en)	Entrance	Right	0.146	4	
m US HWY 42 N & US HWY 42	Speed-Change Lane (en)	Entrance	Right		0.146	0.146 4

Auto-calculate Curve Radii

TransModeler Traffic Simulation Software

Geospatial Reference Files

TransModeler Traffic Simulation Software

How It Works

- Utilize graphical functionality (GIS) of software
- Automatically identify/segment study sections
- User input other analysis variables through GUI
- Perform computations
- Report results

Steps

- 1. Define roadway limits and facility types
- 2. Determine period of study
- 3. Determine traffic demand (ADT) and availability of crash data
- 4. Determine geometric conditions
- Divide study area into individual sites freeway segments, ramp or C-D roads, or ramp terminals
- Assign observed crashes to individual sites (if applicable)

Determined/Applied through GUI

7. Select and apply Safety Performance Functions (SPF)
8. Apply Crash Modification Factors (CMFs)
9. Apply calibration factors
10. Apply site-specific Empirical Bayes method (if applicable) and severity distribution functions (SDFs)
11. Sum predicted/expected crash frequencies for each site

Internal Computations

Tabular Report (TransModeler or CSV)

Agency Customization

 Geometric 	β Freeways	Freeway Segment Calibratio	on Factors			_					×
	Property Damage Only			T	-				01/T + 1	0.10	01000
Paramatars		Site Type Bural Alliane Segment	Lode BF4	1 30	0.91	1/19 11	I MVFI I 0.99	MVPDU 117	5VIotal 1 38	0.88	1.60
I UIUITICICIS	. Entrance Ramp Speed-Change Lane SPF Coeffici	Rural 6-Lane Segment	RF6	1.17	0.87	1.30 1.3	0.91	1.52	1.12	0.84	1.22
	····· Property Damage Only	Rural 8-Lane Segment	RF8	1.00	1.00	1.00 1.0	0 1.00	1.00	1.00	1.00	1.00
	in Exit Ramp Speed-Change Lane SPF Coefficients	Urban 4-Lane Segment	UF4	1.31	0.95	1.48 1.2	I 1.03	1.30	1.40	0.88	1.63
	Property Damage Only	Urban 6-Lane Segment	UF6	1.17	1.17	1.17 1.3) 1.26	1.32	0.99	1.02	0.97
0	Entrance Ramp Crash Type Distribution	Urban 8-Lane Segment	UF8	1.64	1.49	1.70 1.8	5 1.50	1.99	1.30	1.47	1.24
	Single-Vehicle	Urban 10-Lane Segment	t UF10	1.04	1.29	0.94 1.3	2 1.50	1.24	0.69	1.00	0.58
Distribution Calibration Factors	Horizontal Curve Lane Width Inside Shoulder Width Median Width Median Barrier High Volume Lane Change Outside Shoulder Width Outside Shoulder Width Outside Barrier Foreed-Change Lane CMF Coefficients Horizontal Curve Inside Shoulder Width Median Barrier High Volume Ramp Entrance Ramp Entrance Ramp Entrance SDF Coefficients Calibration Factors										
	Filter	🦂 aa Tex				Default	OK	Apply	Cance	əl	Help

Status

- TransModeler/TransModeler SE Version 6.0
- Beta testing
- HSM Part C Predictive Methods
 - Chapter 18
 - Freeway Segments
 - Speed-Change Lanes
 - Chapter 19
 - Ramps
 - Ramp Terminal Intersections
- Volunteers

THANK YOU!

Tom Creasey <u>tom@caliper.com</u> (617) 775-5759

Core Competencies of the Traffic Analysis, Modeling, and Simulation Practitioner

Chris Melson

LTAP Program Manager

7/28/2021 2021 ITE Annual Meeting: Traffic Analysis, Modeling, and Simulation Cornucopia

Overview of Initiative

Purpose

- Determine core competencies of TAMS
 practitioner
- Benefit
 - Provide foundational structure to:
 - Organize resources
 - Identify user needs
 - Address "gaps"
 - Supplement national guidance
 - Inform educational curriculum
 - Agency-specific use

Core Competency Areas

Applications to Be Modeled

- Data Requirements
- Data Sources
- Data Analysis
- GIS Tools
- Statistical Analysis

Modeling Best Practices

- Best Practices
- Internal Processes
- Technical Report and Correspondence Writing

Principles of Traffic Engineering (and Related)

- Traffic Flow Theory and Characteristics
- Traffic Engineering Studies
- Transportation Planning
- Traffic Signal Operation
- Geometric Design
- Driver Behavior
- Economic Evaluation

Principles of Traffic Engineering (and Related)

- Traffic Flow Theory and Characteristics
- Traffic Engineering Studies
- Transportation Planning
- Traffic Signal Operation
- Geometric Design
- Driver Behavior
- Economic Evaluation

Principles of Traffic Engineering (and Related)

- Traffic Flow Theory and Characteristics
- Traffic Engineering Studies
- Transportation Planning
- Traffic Signal Operation
- Geometric Design
- Driver Behavior
- Economic Evaluation

Modeling Software

Modeling Software

CUBIC. Trafficware.

aimsun.

the mind of movement

Caliper[®]

Applications to be Modeled

- Intelligent Transportation
 Systems
- Traffic Management Strategies
- Mobility as a Service (MaaS)
- Multi-Modal Transportation Systems
- Real-Time Decision Support
- Connected and Automated Vehicles

Survey

- Rate importance of each core competency
 - High Importance
 - Substantial Importance
 - Moderate Importance
 - Low Importance
 - No Importance
- Opportunity to add/modify core competencies

Questions?

Christopher Melson Program Manager Christopher.Melson@la.gov www.louisianaltap.org

Thank You!

