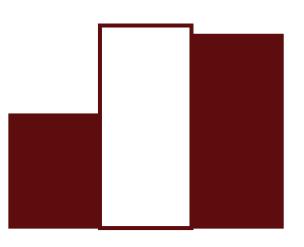

Joint SimSub and SimCap Summer Meeting

June 25, 2021 | 9:00 – 10:30a CST Online | Zoom Platform

imulation and Capacity Analysis User Group



Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates Eric Tripi
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates *Matthew Juckes, Daniel Morgan, Jochen Lohmiller*
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up Chris Melson

POLL

Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates Eric Tripi
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates *Matthew Juckes, Daniel Morgan, Jochen Lohmiller*
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up Chris Melson

2

1. Introductions –

- Eric Tripi, PE PTOE, SimCap Chair, GHD
- Chris Melson, SimCap Co-Chair, LA LTAP
- Doug Noble, ITE Senior Director Management and Operations
- 2. What is SimCap?

What is SimCap?

SimCap = Simulation & Capacity Analysis User(s) Group User(s) Group: Group of motivated individuals who have organized to share information and enhance the practice of a common subject area

SimCap is open to all persons with any level of interest or experience in traffic simulation, capacity analysis, and related practice areas.

Mission Statement

A volunteer network of professionals working across geographic and organizational boundaries to share information, experiences, and to disseminate, promote, and develop guidance and best practices in the application of traffic simulation and capacity analysis tools, methods, and related practice areas.

<u>Goals</u>

Provide a forum for the meaningful exchange of, ideas, research, questions, and trends; Serve as a resource for practitioners and organizations by sharing experiences and developing guidance and best practices; and Advocate for consistency, reliability, and advances to the current state of the practice.

- 6
- 3. Summary of January 12, 2021 Coordinating Council Call
 - Local LA SimCap Group Chris Melson
 - TRB SimSub Committee Chris Melson, Co-Chair, TRB SimSub Committee
 - Presentation: "How to Complete the Circle" Soheil Sajjadi, Ph.D, PE, Senior Transportation Engineer, Arcadis, Joint SimCap and SimSub Task Group
 - FHWA Operations Update Rachel James
 - McTrans Behzad Aghashi, PhD, PMP, Director McTrans Center Presentation: "What is New in the HCM6.1"
 - On-going Tasks Website, SimCap E-community
 - Open Floor Discussion

7

4. Updates –

- Local: North Carolina SimCap Group update, Soheil Sojjadi, PhD, PE, Arcadis
- FHWA: Rachel James, FHWA Operations

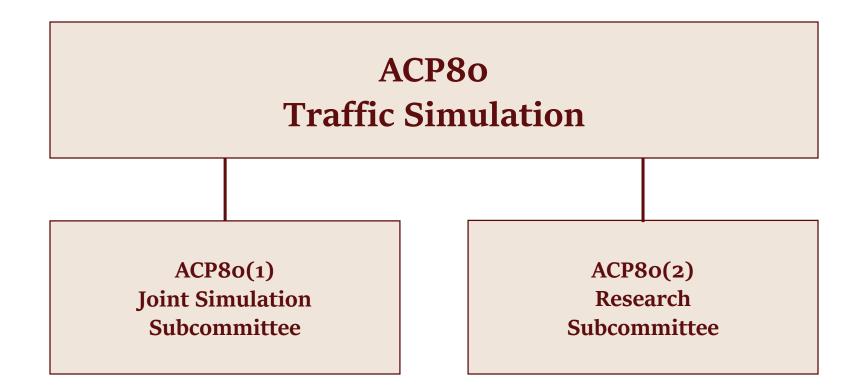
5. Ongoing Tasks

- National SimCap Website Doug Noble/Chris Melson
- National SimCap Community
- Connect National and Local SimCap Groups
- Initiatives Eric Tripi/Chris Melson
 - Future Webinars
 - SimCap sponsored a May 2021 "Traffic Simulation and Calibration: 3 Practitioner-Focused Case Studies"
 - SimCap is sponsoring a Technical Session at the upcoming 2021 ITE Annual Meeting: "Traffic Analysis, Modeling, and Simulation Cornucopia: Core Competencies, Incorporating New Data Sources, Analyzing Emerging Technology."

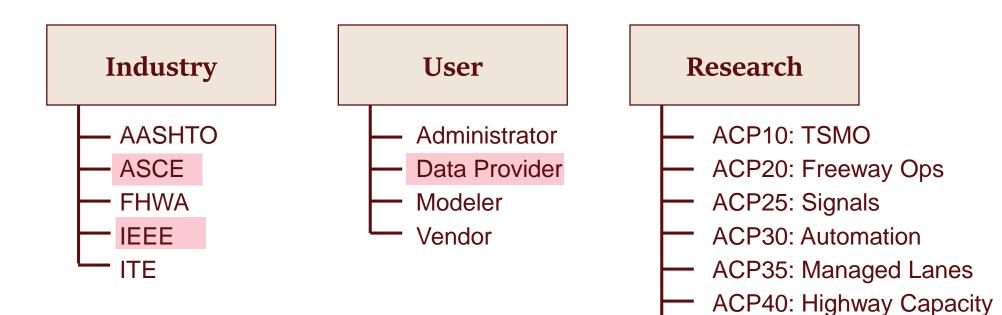
8

6. Upcoming Meetings

ITE Annual SimCap Committee Meetings – August 4, 2021 - Eric will send out invite


Contact me with any SimCap questions or comments:

eric.tripi@ghd.com


Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates *Eric Tripi*
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates Matthew Juckes, Daniel Morgan, Jochen Lohmiller
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up *Chris Melson*

TRB Structure

Liaison Structure

ACP50: Traffic Flow

ACP55: Control Devices

ACP70: Traffic Monitoring

AEP40: Network Modeling

AKR50: Road Weather

AT015: Freight Planning

ID	Goal	Assigned Task Group		
G1	Develop, maintain, or otherwise leverage existing, mechanism(s) to collect user needs and related input	User Needs Task		
G2	Recommend actions and venue to address user needs	Group		
G3	Develop, maintain, host, or otherwise contribute to existing, "living" library of reference material	Resources Task Group		
G4	Provide forum for information exchange and foster joint efforts	Liaison/Outreach		
G5	Maintain comprehensive liaison structure	Task Group		

Task Groups

User Needs

Name	Affiliation
Sudheer Dhulipala	WSB
Shalini Ghosh	WSP
Vishal Mandal	WSP
Mike Reese	NC DOT
Mark Yedlin	GPI

Liaison/Outreach

Name	Affiliation			
MD Jahedul Alam	Dalhousie University			
Georges Bou-Saab	Arcadis			
Lin Zhang	Elite Transportation Group			

Resources

Name	Affiliation		
Apoorba Bibeka	ТТІ		
Joe Blasi	HNTB		
Chris Day	Iowa State U		
Vicki Haskell	WI DOT		
Yingyan Lou	Arizona State U		
Abhilasha Saroj	Georgia Tech		
Maryam Shirinzad	ТТІ		

Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates *Eric Tripi*
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates Matthew Juckes, Daniel Morgan, Jochen Lohmiller
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up Chris Melson

the mind of movement

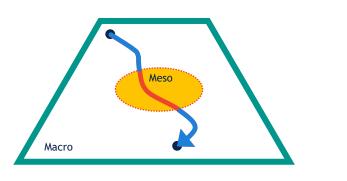


Aimsun vendor update for SimCap

Matthew Juckes

Multimodal simulation

000-000



4

1

Hybrid macro-meso

Vehicles

Every cycle (e.g. 15 minutes)

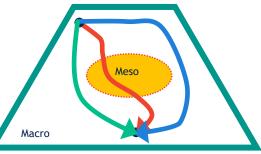
Link costs

Path assignment

Meso

Individual vehicles

- •Capacity is an output
- •Travel time experienced from behavioral models


Macro

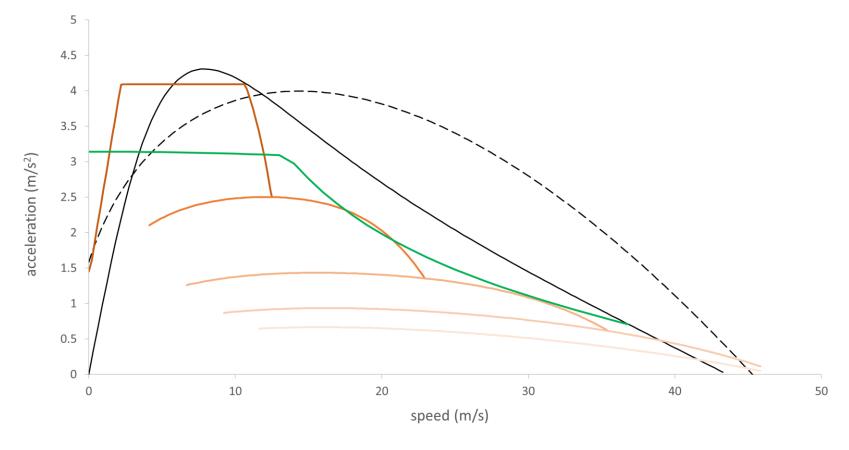
- Individual vehicles
- •Capacity is an input
- •Travel time from volume-delay function
- components evaluated with the assigned

• aimsun.

volume

Routes

Meso

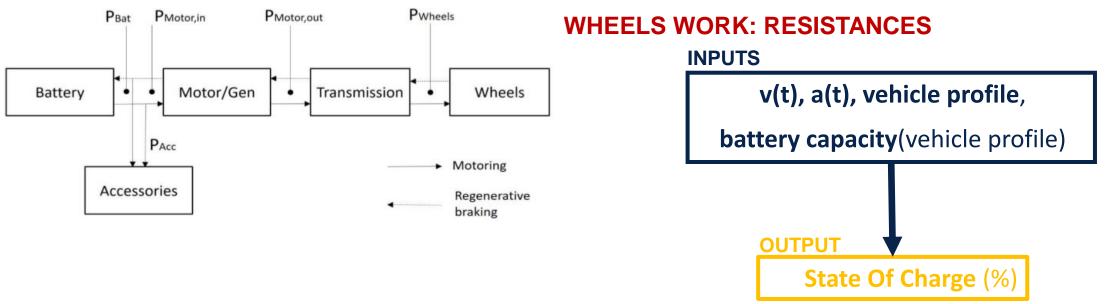

• Dynamic cost functions (experienced travel time)

🛑 Macro

•Volume-delay, turn penalty, junction delay functions (link volume and capacity)

Cost = macro cost + meso cost (mins)

Microsimulation Free-flow Acceleration Model (MFC)


Makridis M, Fontaras G, Ciuffo B, Mattas K. MFC Free-Flow Model: Introducing Vehicle Dynamics in Microsimulation. Transportation Research Record. 2019 He Y, Makridis M, Mattas K, Fontaras G, Ciuffo B, Xu H. Introducing Electrified Vehicle Dynamics in Traffic Simulation. Transportation Research Record. 2020

Battery consumption model

BATTERY ENERGY

MOTOR WORK + ACCESORIES WORK

MOTOR/GENERATOR EFFICENCY

TRANSMISSION & BREAKING EFFICENCY (CHARGING)

Iora Paolo, Tribioli Laura. Effect of Ambient Temperature on Electric Vehicles' Energy Consumption and Range: Model Definition and Sensitivity Analysis Based on
Nissan Leaf Data. World Electric Vehicle Journal. 2019

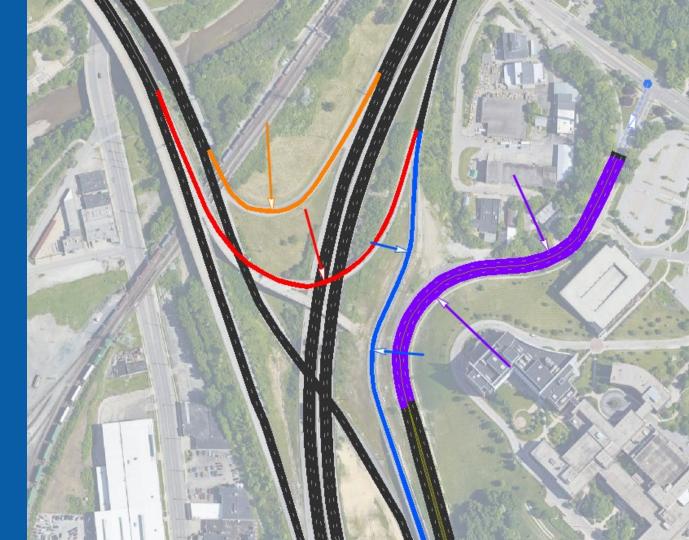
Streamlined energy consumption and emission models

Vehicle Type: 53, Name: CAR 1 {c604a198-733b-4af7-bca2-19924e0a5bed}			? ×					
Iain Dynamic Models Microscopic Model Static Models Attributes								
Main Engine Experiment Defaults London Emission Model								
/ehicle Category: Car		Vehicle Type: 53, Name: CAR 1 {c604a19	98-733b-4af7-bca2-19924e0a5bed}					ī
Engine Type Composition		Main Dynamic Models Microscopic Mod	del Static Models Attributes					
			es 3D Shapes Environmental Models					
Diesel	40.00 %	Engine Types						
Electric	10.00 %	Engine Type (%)	Energy Consumption Model QUARTET Emission M	odel Panis et al Emis	ssion Model			
Liquefied Petroleum Gas (LPG)	0.00 %	Petrol (50%)	Energy Consumption Models					
Petrol	50.00 %	Liquefied Petroleum Gas (LPG) (0%)		Mean	Deviation	Minim	num	Maximum
		Electric (10%)	Initial Energy Level (SOC or Fuel) 100.00		0.00	0.00	100.00)
		Diesel (40%)	Fuel Consumption Model					
/ehicle Type: 53, Name: CAR 1 {c604a198-733b-4af7-bca2-19924e0a5bed}			Min Consumption Speed F1 (at 90 km	'h): F2 (at 12	20 km/h): Fi (Idling)	C1 (Accelerating)	C2 (Accelerating)	Fd (Decelerating)
Aain Dynamic Models Microscopic Model Static Models Attributes			0.0000 km/h 0.0000 l/100 km			0.0000 ml/s	0.0000 mls2/m2	0.0000 ml/s
Main Engine Experiment Defaults London Emission Model								
Fleet Mix			Battery Consumption Model					
Emission Vehicle Type				Mean	Deviation	Minimum		Maximum
Emission Vehicle Type: Car			Electric Accesories Power 0.00 kW		0.00 kW	0.00 kW	0.00 kW	
					1.1			
Configuration								
Fleet Mix Configuration: Custom Configuration	\sim			Reset				
Engine Types								
Engine Type (%)	Standard Emis	sion Percentages						
Petrol (50%)		Standard Emission	Percentage					
Diesel (40%)	Euro 0		0.00 %					
Electric (10%)	Euro 1		0.00 %					
	Euro 2		0.00 %					
	Euro 3		0.00 %					
	Fure 4		0.00.0/					

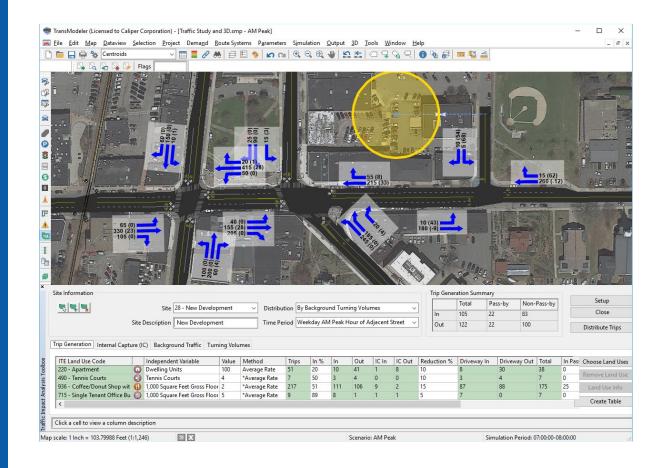
Other new features

- Flash don't walk behavior for pedestrians
- Yield model for pedestrians
- Target gap for all vehicles (to model CAVs and human drivers)
- Rerouting action for transit vehicles
- Improved automatic turn capacity calculation
- Zone splitting
- Time-dependent shortest path calculation in DUE
- Capacity-constrained macro network loading in hybrid macro-meso
- Dynamic transit assignment in meso

For more information matthew.juckes@aimsun.com


New Features in TransModeler 6.0

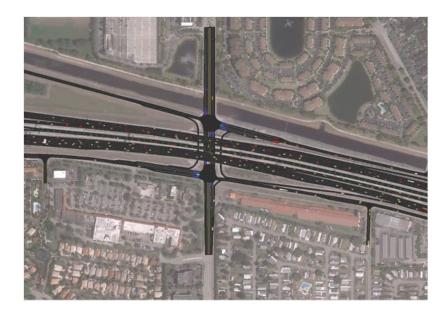
Daniel Morgan Vice President


Horizontal Curves

- Automatic detection of curve geometry: start, end, midpoint, radius
- Multiple curves per segment
- More accurate treatment of driver behavior

Enhancements to TIA Toolbox

• 10th Edition Trip Generation Rates

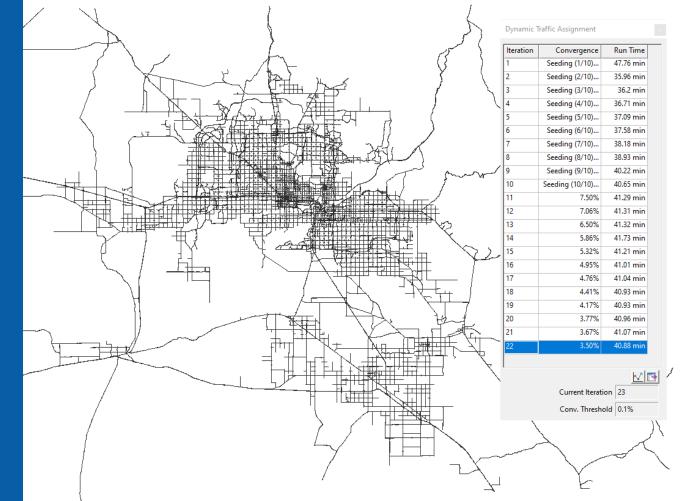

New Options for Managed Lanes

- Combinatory toll surcharges and discounts
- Surcharges and discounts as absolute or percent values

Relative Surcharge (+) / Discount (-)					
None	~				
Toll Plazas (%)	HOT Lanes (%)				
0.0	0.0				
0.0	0.0				
0.0	0.0				
0.0	0.0				
	Toll Plazas (%)				

Value of Time (VOT)

- 10.00 and below (3437)
- 10.00 to 15.00 (2946)
- 15.00 to 20.00 (483)
- 20.00 to 25.00 (444)
- 25.00 to 50.00 (418)
- 50.00 to 70.00 (432)
- **1**00.00 (416)


New Road Editing Tools

• Couple two one-way streets into a single link

Road Editor ×						
lb ka • /+ /× /₄ /₄ K4 K× K4 •						
/+ /∗ @ • ⊾+ ⊾∗ /∓ /⁄∗ � �.						
🕎 🕾 🖾 🍞 🌈 % 🥠 - 💈 🛢 🔅 -						
Road Class {Undefined}						
Lanes on Left 1 🛉 on Right 1 🛉						
Lane Width (ft) 12 One Way						
Confirm	\times					
This link is one-way.						
Do you want to merge it with the link in the opposite direction to form a two-way link?						
Remember my choice						
<u>Y</u> es <u>N</u> o						
	Image: Section of the link in the opposite direction					

Improved Parallelization

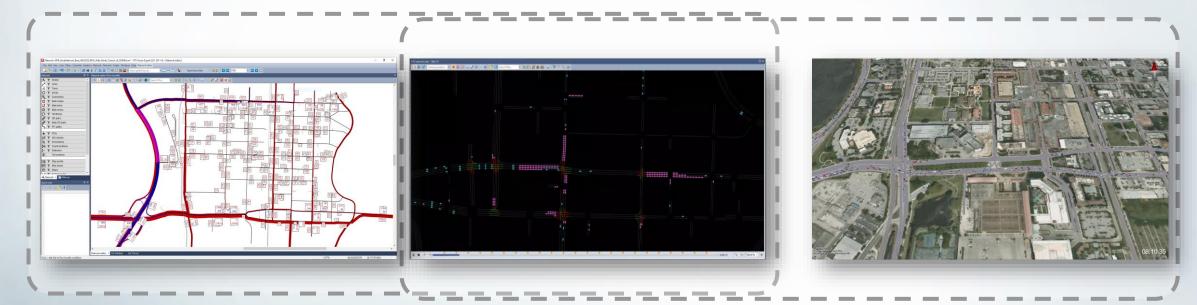
- Faster run times
- Increased productivity
- Reduces costs and schedules for sensitivity and reliability analyses

Ongoing Research Efforts

- Integration of Highway Safety Manual methods for freeways and ramps into TransModeler
- New driver behavior models including the **Intelligent Driver Model (IDM)** car following algorithm, which has been widely used in the research to simulate autonomous vehicles
- Development of traffic simulation and analysis guidance using TransModeler SE and HCS for the Ohio DOT
- Major improvements to dynamic traffic assignment (DTA) methods

PTV Group - Vendor update

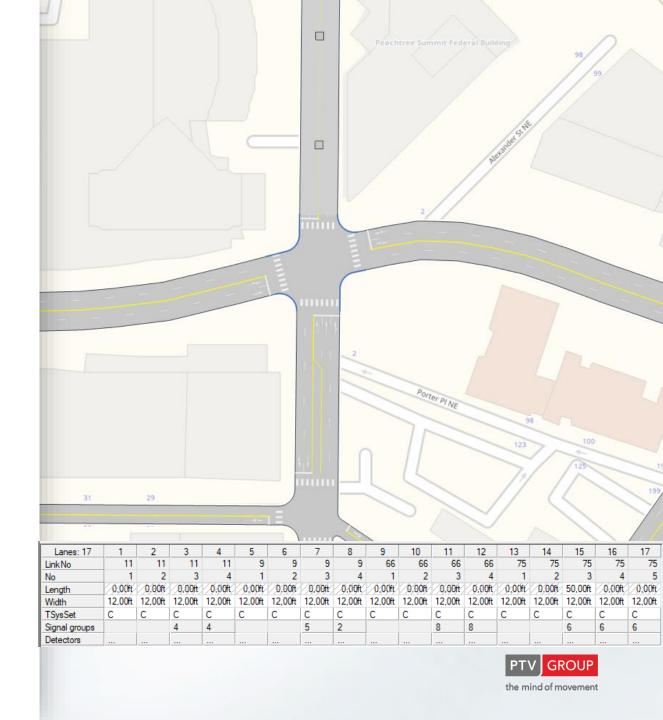
Jochen Lohmiller



PTV Visum & PTV Vissim

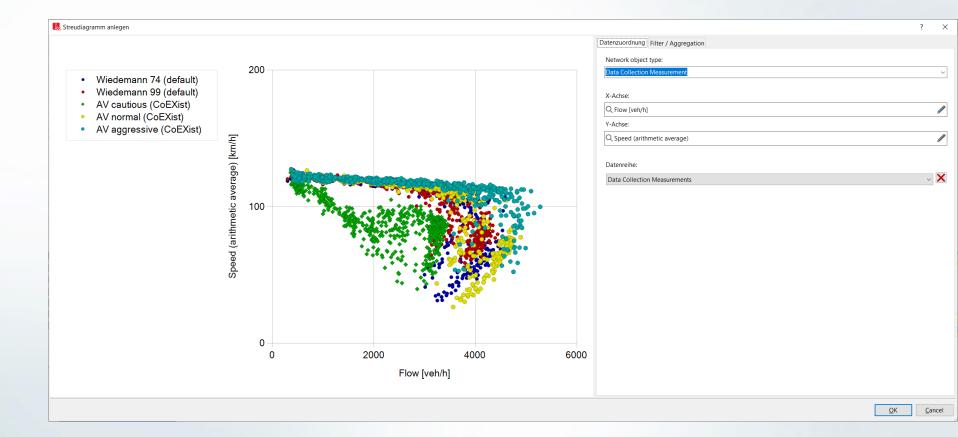
3

the mind of movement


Junction editor for PTV Visum

Junction editor improvement

- New network display with easy navigation through network
- spatial extension of nodes, i.e. show "asphalt"


Motivation

- Similarities to result of export/import PTV Vissim
- Trouble-shooting of networks

Scatterplot

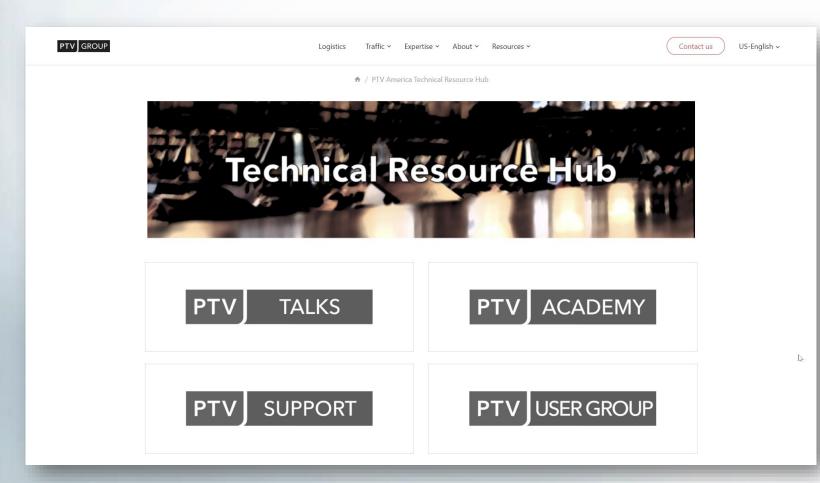
- Attribute X over Attribute Y e.g. Speed [km/h] over Flow [veh/h]
- Filters and configurations

PTV Vissim – Bosch ESTM (Environmentally Sensitive Traffic Management)

Simulated Trajectories Vehicle Type (Car, Truck, ...) Emission classes (EU4, EU5, ...

Emission (CO₂, NO_x, ...)

6 Strictly private and confidentia


PTV Vissim – Bosch ESTM

- Emission results fed back into PTV Vissim data model
 - Link evaluation segments
- Use of PTV Vissim built-in evaluations
 - Lists
 - (3D) Visualization
 - Charts
 - (2D/3D) AVI recording
 - Scenario comparison

Resource page

http://ptv.to/learn

PTV GROUP

the mind of movement

Join the conversation

11/

#MindOfMovement

Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates Eric Tripi
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates *Matthew Juckes, Daniel Morgan, Jochen Lohmiller*
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up Chris Melson

Agenda

- A. Welcome and Introductions Chris Melson
- B. SimCap Updates *Eric Tripi*
- C. SimSub Updates Chris Melson, John Shaw
- D. Vendor Updates *Matthew Juckes, Daniel Morgan, Jochen Lohmiller*
- E. Update on TSSM Review Process Sanhita Lahiri, Mohammed Hadi,
- F. Wrap Up Chris Melson

Chris Melson Program Manager LTRC cmelson1@lsu.edu

John Shaw

Researcher InTrans **jwshaw@iastate.edu**

Eric Tripi

Regional Transportation Leader GHD **Eric.Tripi@ghd.com**