

Volunteer Network of Professionals Working Together to Support, Promote, and Improve Best Practices in the Application of Traffic Simulation and Capacity Analysis

4/04/2019 Educational Meeting (#3)

Meeting Agenda

Joey LeFante Stantec

Microsimulation Study of Crescent City Connection Bridge

CCC Toll Plaza Reconfiguration

SimCap Louisiana April 4, 2019 Joey Lefante, PE, PTOE

Agenda

- Project Background
- Modeling Parameters
- Alternatives Analysis
- Project Outcome

Project Background

Project Background

Project Location

Project History

- Current toll plaza was implemented after opening of second bridge span in 1989 with a scheduled expiration date of December 31, 2012
- A toll renewal referendum was rejected by voters, resulting in an end to tolling on the Crescent City Connection Bridge

Project Background

an

ane

Terry Pkwy Ramp US 90B

Existing Configuration

4 Lane

3 Lanes

 Crescent City Connection is the second most heavily traveled highway corridor in Louisiana (after I-10 in Metairie)

12 Lanes

- Bi-directional ADT = 180,000 vehicles
- Weekday peak hour directional split is approximately 55% to 45% split

Tunnel

Project Objectives

- Reduce congestion
- Provide a safe merge operation at the bridge approach
- Improve reliability of the corridor
- Protect the investment

Modeling Parameters

AM Traffic Distributions

Existing Traffic Conditions

	NUMBER OF VEHICLES PER LANE												
TIME	1	2	3	4	5	6	7	8	9	10	11	12	TOTAL
	CASH	CASH	TAG	CASH	CASH	TAG	TAG	CASH	TAG	CASH	TAG	CASH	
4/18/2012 5:00	22	14	68	33	34	71	47	13	16	21	60	23	422
4/18/2012 5:15	24	27	113	55	58	100	89	24	41	23	66	38	658
4/18/2012 5:30	41	49	140	65	74	116	106	32	76	34	104	41	878
4/18/2012 5:45	54	56	160	82	77	139	113	37	86	38	118	38	998
4/18/2012 6:00	65	62	194	86	82	167	126	48	111	52	132	44	1169
4/18/2012 6:15	91	101	230	105	103	230	178	25	143	81	164	64	1515
4/18/2012 6:30	125	96	273	115	119	280	249	85	211	96	217	90	1956
4/18/2012 6:45	120	132	290	118	102	287	270	83	293	103	274	97	2169
4/18/2012 7:00	139	168	243	118	131	237	208	107	262	105	276	126	2120
4/18/2012 7:15	151	142	242	122	127	244	209	100	238	122	259	132	2088
4/18/2012 7:30	153	160	220	110	131	212	183	118	227	136	249	135	2034
4/18/2012 7:45	130	149	190	112	118	187	164	111	202	131	222	126	1842
4/18/2012 8:00	140	139	210	109	138	208	168	125	211	126	241	114	1929
4/18/2012 8:15	109	112	243	73	109	237	188	115	220	141	216	123	1886
4/18/2012 8:30	131	119	232	76	105	247	186	113	203	128	246	107	1893
4/18/2012 8:45	90	90	227	90	81	189	176	70	162	89	212	79	1555
4/18/2012 9:00	92	72	199	78	76	179	151	52	118	74	170	62	1323
4/18/2012 9:15	93	82	212	92	68	201	147	68	115	68	169	68	1383
4/18/2012 9:30	95	79	215	82	105	191	138	63	114	78	175	72	1407
4/18/2012 9:45	92	74	212	81	99	167	155	71	120	84	195	77	1427
4/18/2012 10:00	82	54	181	66	89	145	116	50	79	68	143	63	1136
4/18/2012 10:15	92	66	174	70	89	155	107	58	85	79	137	57	1169
4/18/2012 10:30	87	68	191	93	79	165	106	70	74	73	137	71	1214
4/18/2012 10:45	88	76	173	78	84	146	117	63	68	69	149	66	1177

Lane Distribution

Lane Distribution

Vehicle Compositions / Relative Flows											
Select	layou	ıt	•	Ŧ							
Coun	No	Name			Count: 4	VehType	DesSpeedDistr	RelFlow			
1	1	Default			1	101: Car Cash	50: 50 km/h	0.316			
2	2	Cash vs	Tag		2	102: Car Tag	50: 50 km/h	0.664			
					3	201: HGV Cash	50: 50 km/h	0.006			
					4	202: HGV Tag	50: 50 km/h	0.014			

Post-Toll Booth Merge Area

Existing Traffic Conditions September 10, 2012 7:30 AM

Existing Traffic Conditions September 10, 2012 7:45 AM

Existing Traffic Conditions September 10, 2012 8:00 AM

Internet | Protected Mode: Off

🕤 🔹 🔍 105% 💌

Downstream Impacts on Congestion

Considered Alternatives

- Existing Configuration
 - w/ Toll Collection
 - w/o Toll Collection
- 2x4 Merge Configuration
 - w/o Ramp Meters
 - w/ Ramp Meters
- Freeway Merge Configuration
 - w/o Ramp Meters
 - w/ Ramp Meters

Existing Configuration w/ Toll Collection

• The existing lane configuration with the tolls in place

Existing Configuration w/ Toll Collection

Existing Configuration w/o Toll Collection

- The existing lane configuration with the tolls expiring and no capacity improvements
- Improvements Necessary
 - None

Existing Configuration w/o Toll Collection

2x4 Merge Configuration w/o Ramp Meters

- The existing lanes at the toll plaza are converted from 12 lanes to 8 lanes through a series of lane reductions
- The 8 lanes are brought up to toll booths in pairs
- Merges 2 lanes (as opposed to 3) into each bridge lane
- Improvements Necessary
 - Restriping of toll plaza

2x4 Merge Configuration w/o Ramp Meters

2x4 Merge Configuration w/o Ramp Meters

2x4 Merge Configuration w/ Ramp Meters

- Applies ramp meters to the 2x4 merging method
- Existing toll booths could remain and be retrofitted for ramp meters
- Improvements Necessary
 - Restriping of toll plaza
 - Ramp meters constructed at current toll booths

2x4 Merge Configuration w/ Ramp Meters

Freeway Merge Configuration w/o Ramp Meters

- Uses new roadway striping to merge each individual ramp merging separately onto a free flowing mainline
- Improvements Necessary
 - Restriping from Terry Pkwy through toll plaza
 - Demolition of toll booths and roadway reconstruction to eliminate speed reduction areas

Freeway Merge Configuration w/o Ramp Meters

Freeway Merge Configuration w/ Ramp Meters

- A traditional ramp meter installation with meters on each individual ramp merging onto a free flowing mainline
- Improvements Necessary
 - Restriping from Terry Pkwy through toll plaza
 - Demolition of toll booths and roadway reconstruction to eliminate speed reduction areas
 - Ramp meters constructed on ramps

Freeway Merge Configuration w/ Ramp Meters

Alternatives Analysis

Total Throughput

Travel Time

Alternatives Analysis

Throughput by Approach

Alternatives Analysis

Travel Time by Approach

Project Outcome

Project Outcome

Roadway Plans

Michael Mahut INRO

Introduction to Dynamic Traffic Assignment

Introduction to Dynamic Traffic Assignment

Michael Mahut, VP Simulation, INRO

Louisiana SimCap, April 4 2019

Proprietary and Confidential ©INRO 2019

Proprietary and Confidential ©INRO 2018

CINRO

Introduction to Dynamic Traffic Assignment

| What is DTA?

| What is Equilibrium Assignment?

| Traffic Models used in DTA

MINRO =

What is Dynamic Traffic Assignment?

- Time-dependent ("dynamic") model for predicting drivers' route choices along with the corresponding traffic flows and speeds in a transportation network
- Two main computational components
 - → Traffic (simulation) model
 - → Assignment (route choice) model
- Complementary tool to existing transportation network models
 - → Static assignment (travel demand forecasting) models
 - → Traffic micro-simulation models
- DTA is designed to address applications that fall in-between static-assignment and micro-simulation applications

Typical DTA Models

Large networks and congested traffic conditions, resulting in complex route choices

- → Network subareas, Long corridors, Citywide models
- Traffic congestion is captured using a traffic simulation approach
 - → More sensitive and realistic than TDM, more detailed with respect to causes and effects of traffic congestion, explicit traffic control
 - → Fewer parameters than micro-sim models; parameters have physical interpretation
- Modeling average-day conditions requires equilibrium route choice (DTA) which is stable and optimal
 - → Route choices are not determined by the user

Route Choice in Dynamic Traffic Assignment

"Assignment" refers to drivers' route choices

- → mathematical approach to route choice which produces a solution (set of route choices) that has well-defined properties
- → Defined as path proportions for each Origin-Destination pair for each departure-time interval

"Equilibrium" property = every driver has found the best path for his/her trip

- → Travel times (costs) on all used paths are approximately equal for each Origin-Destination pair and each departure-time interval
- → Thus: if drivers could know how long the trip would have taken via all other possible routes, every driver would be satisfied that they had made the best choice
- → "optimal solution" (equilibrium solution)

Route Choice in Dynamic Traffic Assignment

The "Equilibrium" property is very important:

- Mathematically defensible way to determine link volumes based on assumptions and not on the modeler's judgement
- → Yields "consistent" route choices: i.e. subsequent changes to the inputs will produce changes to the outputs that makes sense and are directly linked to the input changes
- Equilibrium assignment is a hard problem to solve:
 - → Route choices depend on travel times, but travel times depend on route choices: circular problem
 - → Can only be solved by running the simulation iteratively, many times over, and adjusting route choices (path proportions) until the equilibrium route solution is achieved

Traffic models used in DTA

- "DTA" encompasses a wide range of traffic models with different levels of detail and realism
- Macroscopic ("analytical"): based on vdf function with time dimension
 - → Does not satisfy basic traffic flow theory e.g. flow capacities, spill-back (ref. DTA Primer)
- Conventional mesoscopic: hydrodynamic traffic flow model (macro TFT)
 - → Respects flow-density relationship but does not explicitly represent individual lanes
 - → Limitations in handling traffic flow breakdowns due to choke effects, lateral spillover
- Lane-based mesoscopic: based on micro TFT
 - → Overcomes many limitations of conventional non lane-based mesoscopic models
 - → Level of realism and fidelity varies depending on the software

Proprietary and Confidential ©INRO 2018

CINRO

Sample DTA Applications with Dynameq

| Subarea models | Citywide models | Freeway models

Seattle Alaskan Way Viaduct Replacement

- | Tolled tunnel to replace urban freeway
 - Level 2 and 3 (investment grade) Toll Studies & EIS
- Toll forecasting
- Route diversion
- Construction mitigation
- Reversible lanes
- Traveller response to tolls and HOT lanes

Kansas City, USA

- Dense CBD core with physical constraints
- Base year calibration completed 2017

Objectives

- Improvements to overall traffic flow and accessibility in CBD core
- Evaluating alternatives to the US-169 corridor
- Focus on I-70 corridor and connections to street grid in the downtown area

San Francisco

Citywide model used to study a wide range of development plans

Applications

- Reconstruction of major roadways
- Bus rapid transit corridors
- Corridor Management
- Neighbourhood Transportation Plans
- Site Development

Model Specs

170 km²

- 5 hr demand / 625,000 trips
- 2 classes + transit
- RAM = 14 GB

San Francisco Studies

Chinatown Neighborhood **Transportation Plan**

Evaluate neighborhood traffic calming strategies:

- Reduce:

 - →
 - Maintain or modest increase :
 - →
- Maintain or reduce:
 - →
 - >

MINRO =

I5 Freeway Corridor

- Linear corridor freeway model
- Freeway, expressway and interchanges
- | 26 km (16 mile)

Objectives

- Time-of-day reversible lanes
- Testing of operational strategies:
 - → Tolls, Ramp Metering
 - → Hard Shoulder Running
 - Reserved Lanes
- Fast-tracked project
 - 8 weeks development and calibration (am/pm)

I5 Freeway Corridor

- Linear corridor freeway model
- Freeway, expressway and interchanges
- 26 km (16 mile)

Objectives

- Time-of-day reversible lanes
- Testing of operational strategies:
 - → Tolls, Ramp Metering
 - Hard Shoulder Running
 - Reserved Lanes
- Fast-tracked project
 - 8 weeks development and calibration (am/pm)

I5 Freeway Phase 2

Full corridor including main parallel facilities and city core from SR99 project

Coverage

- I-5 from Georgetown to Mountlake Terrace
 - Mainline, Express Lanes, all ramps, connecting arterials, and ramp termini signals
- Other Facilities between SR 99 and 15th Ave
- Currently in model development / base year calibration stage

MINRO

Performance

	Time Period	Classes	Trips	CPU time	CPU / iteration
Kansas City	4 h	3	673,000	3.1 h	3.7 min
Seattle SR-99	5 h	6 + transit	543,000	4.2 h	5 min
Birmingham, UK	3 h	3	335,000	40 min	1.2 min
I-5 Freeway Seattle	5 h	6 + transit	410,000	65 min	2.2 min
San Francisco	5 h	2 + transit	623,500	2.5 h	3.3 min
Edmonton, Canada	3 h	3 + transit + LRT	901,500	2.2 h	5.2 min

Hardware: Xeon E5 – 3.1 GHz / 20 threads

Version: Dynameq 4.1

© INRO 2018. Proprietary and Confidential

Proprietary and Confidential ©INRO 2018

Further Reading

RINRO

DTA Motivation and Overview

- "Interest has grown in applying traffic analysis tools capable of analyzing travel activities and dynamic network performance for a corridor or region over peak hours or even extended daily hours."
- "DTA models supplement existing travel forecasting models and microscopic traffic simulation models."
 - http://onlinepubs.trb.org/onlinepubs/circulars/ec153.pdf

MINRO

DTA Guidelines Document (FHWA – USA)

- "The purpose of this guide is to provide practitioners with guidance on how to apply DTA within transportation models."
- "This guide provides a set of proven approaches to model building, calibration, and alternatives analysis."

http://ops.fhwa.dot.gov/trafficanalysistools/

MINRO

Edmonton Case Study

Learn how the City of Edmonton is leveraging a DynameqTM citywide traffic simulation and dynamic traffic assignment (DTA) model to consistently inform multiple operational planning studies in support of the city's Transportation Master Plan and its holistic view of transport as an interconnected, multi-modal system.

Transforming Edmonton: The City Vision

Learn how the City of Edmonton is leveraging a Dynameq¹⁰/citywide traffic simulation and dynamic traffic assignment (DTA) model to consistently inform multiple operational planning studies in support of the city's Transportation Master Plan and its holistic view of transport as an interconnected, multi modal system.

comonton, Alberta is how the fastest growing city in canada. A near 15% population growth over the last five years and a new transportation master plan emphasizing greater multi-modality are bringing a variety of new infrastructure and development projects including a major new \$1.8B light rail and over \$1.8B light

o support transportation investments, city engineers/ anners have become more interested in analyzing network ide traffic diversion and impacts. They studied construcno mitigation and preserved downtown accessibility during on phases, and evaluated the design of new facilities cluding light rail, transit signal priority and corridor im-

Mini Roundtable

DOTD and SimCap

6

- What can you do for DOTD?
 - Calibration procedures
 - Default settings
 - Formats
 - Uses for simulation
 - New software tools

Survey Results (1/4)

- 7
- Objectives: Please choose SimCap Louisiana's two most important objectives
 - Increase awareness of LADOTD initiatives, national activities, and the latest SimCap tools (64%)
 - Provide educational opportunities to learn of more appropriate and efficient ways of conducting SimCap analysis (64%)

- Increase awareness of state/federal initatives and SimCap Tools
- Increase LADOTD communication to stakeholders
- Provide a sharing forum
- Provide educational opportunities
- Become a mechanism to request education/training
Survey Results (2/4)

8

- Purpose of Educational Meetings: Please choose the two most beneficial activities you would like featured at the educational meetings
 - Training: internal or external speakers provide training on specific SimCap tools and software (64%)
 - Peer experiences: practitioners present on their experiences with a current SimCap analysis method or tool (46%)
 - Federal initiatives: external speakers present on current, SimCap-related FHWA projects, programs, initiatives, or guidance documents (46%)

Survey Results (3/4)

9

Topics at Educational Meetings:

Select the topic(s) you would like discussed at the educational meetings

- SimCap studies to evaluate mitigation/management strategies for recurring congestion (64%)
- Guidance on the application of SimCap tools (55%)
- SimCap studies to investigate the impact of emerging technology (46%)

Guidance on the application of tools

SimCap studies to investigate non-recurring congestion

SimcCap studies to investigate recurring congestion

SimCap studies to evaluate strategies for non-recurring congestion
SimCap studies to evaluate strategies for recurring congestion

SimCap studies to evaluate strategies for recorring conges
SimCap studies to investigate emerging technology

Survey Results (4/4)

10

Tool-Specific Topics: Experience vs. interest level

- Experience mainly with: (1) traffic signal optimization, (2) HCM-based tools, and (3) microscopic sim.
- Variety of topics of interest
- Top-Ranked: Traffic signal optimization
- High Interest and greatest knowledge gap: (1) mesoscopic sim., (2) macroscopic sim., and (3) sketch-planning

THANK YOU FOR ALL ATTENDING!!

4/04/2019 Educational Meeting (#3)