

Volunteer Network of Professionals Working Together to Support, Promote, and Improve Best Practices in the Application of Traffic Simulation and Capacity Analysis

#### 7/17/2018 Educational Meeting (#1)

### **Meeting Agenda**







Bradley Reynolds Kittelson & Associates, Inc



Soheil Sajjadi Arcadis

#### Overview of North Carolina SimCap



## Overview

- History & Context
- Organization, Size, & Operation
- Objectives
- Lessons Learned



## History & Context

- •Why SimCap User Group?
- 2006 Simulation Model Users Group (SMUG)
  - Part of NCSITE Traffic Engineering Council
  - How SMUG can help
  - SMUG Mission Statement
  - SMUG Future Initiatives



## History & Context (2)

- •Activities 2006 Present
  - Annual meetings
  - Joint meetings
  - Lunch & Learn meetings
  - Webinars
  - Task forces
  - Surveys
  - Support NCSITE



## Organization

- NCSITE
   Board of Directors
- Councils
  - Strategic Initiatives
  - Consultant / Vendor
  - Traffic Engineering (TEC)
  - Transportation Planning (TPC)

- TEC User Groups
  - ITS/Tolls
  - Signal Systems
  - SimCap
- TPC User Groups
  - NEPA
  - Bicycle/Pedestrian
  - Safety





## NCSITE SimCap Leadership

simcap@ncsite.org

### Soheil Sajjadi, P.E.

Soheil.Sajjadi@arcadis.com

### Bradley Reynolds, P.E.

breynolds@kittelson.com



## Mission Statement (2006)

- Serve **simulation model users** by creating a resource of information for all to use
- Serve transportation managers by providing information to help make project level decisions regarding modeling/simulation
- Serve transportation agencies to assist in developing modeling practices acceptable statewide
- Serve as a central resource of information to all interested parties at all levels of simulation use



## Objectives

- Develop professionals
- Strengthen relationships
- Advance the profession
- •Reflect goals & mission of NCSITE & TEC



## **Annual Activities**

- •1 half-day meeting
- •1 lunch and learn
- •1 joint gathering with peer organization
- Increase SimCap mailing list (~70 members)
- Support NCSITE annual meeting



## Lessons Learned

- •Engage passionate, committed individuals
- •Find common interests & goals
- •Meet with a purpose (professional, social, etc.)
- Support network is key
- Encourage new ideas and approaches
- It's a marathon, not a sprint





Application of Transportation Modeling & Simulation in Planning and Decision-Making Process

Application of Transportation Modeling & Simulation in Planning and Decision-Making Process



Pong Wu Capital Region Planning Commission July 17, 2018

### Overview

- I. Modeling Area and Location
- **II.** Traffic Counts and Data
- III. Traffic Operation Modeling & Simulation (No-Build vs. Build)
- **IV.** Potential Crashes Simulation
- V. Conclusion

### I. Modeling Area and Location



### I. Modeling Area and Location



#### **Tools for Traffic Operation Modeling & Simulation**

Following modeling related software was used in this planning and traffic operation analysis











### **II. Traffic Counts and Data**

RCRPC

Existing Peak Hour Intersection Volumes: Adams\_ParkAve (7/11/2013) RCRPC

Existing Peak Hour Intersection Volumes: Diamond ParkAve (6/6/2013)

9/4/2013

9/4/201

**Traffic Count & Analysis** 

- a. Conducted intersection traffic counts.
- b. Performed traffic data analysis for each intersection including identify:
- existing AM & PM peak hour traffic turning movements by approach;
- Intersections' peak hour traffic volume and,
- peak hour factors for each intersection

|       |         |        | Existing Peak Hour Intersection Volumes: Main /ParkAve (6/6/2013)<br>RCRPC |        |      |          |          |        |       |       |       |        | 3       | 9/4/2013 |       |     | TOT or   |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
|-------|---------|--------|----------------------------------------------------------------------------|--------|------|----------|----------|--------|-------|-------|-------|--------|---------|----------|-------|-----|----------|--------|--------|-------|-----|-------|------|--------|--------|-------------|------------------|--------|-----------------------------------------|------|--------|--------|
|       |         |        | R                                                                          | CRPC   |      |          |          |        |       | C     | ARS   |        |         |          |       |     | [        |        |        |       |     |       | CAR  | S + TI | RUCI   | KS          |                  |        |                                         | -    |        | 139    |
|       |         |        |                                                                            |        | N    | lain St. |          | Pa     | ark A | ve    | Ma    | ain St | L F     | Park Ave | •     | J   | D        | iamor  | d St.  |       | 15  | at St | 0    | Diamor | nd St. | 1:          | st St            |        |                                         | TOT  | one-hr | 437    |
| Friet | ing P   | eak l  | Hour                                                                       | Inter  | sect | ion V    | alun     | 1.291  | ful   | herry | Par   | LA.    | e (7/2/ | 2013)    | - And |     |          |        |        |       |     |       |      |        |        |             | 4/2012           | 1000   |                                         |      |        | 681 1  |
| RCR   | PC      | Cak    | nour                                                                       | Inter: | secu | ton v    | orun     | aco    | uu    | Jerry | _1 a1 | A.11   | e (nan  | 2013)    |       |     |          |        |        |       |     |       |      |        |        | 1           | 12013            | TOT    | one-hr                                  | 291  |        | 619 2  |
| Reite |         |        |                                                                            |        |      |          | CARS     |        |       |       |       |        |         | [        |       |     |          |        | C      | ARS   | TR  | UCKS  |      |        |        |             |                  |        | 1000 0000000000000000000000000000000000 | 305  | S 1    | 390 2  |
|       | Mu      | lberry | St.                                                                        | Park   | Ave  | St.      | Mult     | berry  | St.   | Pari  | Ave S | st.    |         | Dia      | mond  | St. | 1        | Ist St |        | Diam  | ond | St.   |      | 1st St | ****** |             |                  | 165    |                                         | 456  | 1354   | 994 2  |
| Start | ******* | SB     |                                                                            | 1      | WB   |          |          | NB     |       |       | EB    |        |         |          | SB    |     | hateroon | WB     |        | 1     | NB  |       |      | EB     |        |             |                  | 190    |                                         | 689  | 1752   | 627 2  |
| Time  | R       | T      | L                                                                          | R      | T    | L        | R        | T      | L     | R     | T     | L      | TOT     | R        | T     | L   | R        | T      | L      | R     | T   | L     | R    | T      | L      | TOT         | one-hr           | 262    | 1000                                    | 358  | 1804   | 914 3  |
| A.M., | 7/2/20  | 13     |                                                                            |        |      |          | Sector 1 |        |       |       |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        | 22107(25-10 | an so cores in a | 364    | 981                                     | 352  | 1855   | 1307 3 |
| 7:00  | 2       | 24     | 17                                                                         | 0      | 72   | 1        | 0        | 18     | 0     | 1     | 84    | 0      | 219     | 2        | 24    | 17  | 0        | 72     | 1      | 0     | 18  | 0     | 1    | 84     | 0      | 219         |                  | 250    | 1066                                    | 329  | 1/28   | 1136 3 |
| 7:15  | 0       | 20     | 4                                                                          | 0      | 60   | 1        | 0        | 0      | 0     | 1     | 91    | 0      | 177     | 0        | 20    | 4   | 0        | 60     | 1      | 0     | 0   | 0     | 1    | 91     | 0      | 177         |                  | 260    | 1096                                    | 234  | 1195   | 1428 4 |
| 7:30  | 0       | 36     | 23                                                                         | 0      | 111  | 0        | 0        | 0      | 0     | 0     | 203   | 0      | 373     | 0        | 36    | 23  | 0        | 116    | 0      | 0     | 0   | 0     | 0    | 203    | 0      | 378         | Sec. 1.          | 275    | 1007                                    | 371  | 1214   | 765 4  |
| 7:45  | 3       | 56     | 47                                                                         | 0      | 293  | 2        | 0        | 0      | 0     | 4     | 342   | 0      | 747     | 3        | 56    | 47  | 0        | 293    | 2      | 0     | 0   | 0     | 4    | 342    | 0      | 747         | 1521             | 237    | 994                                     | 444  | 1329   | 1275 4 |
| 8:00  | 14      | 34     | 37                                                                         | 0      | 179  | 0        | 0        | 0      | 0     | 7     | 168   | 0      | 439     | 14       | 34    | 37  | 0        | 179    | 0      | 0     | 0   | 0     | 7    | 169    | 0      | 440         | 1742             | 281    | 1053                                    | 476  | 1525   | 12757  |
| 8:15  | 22      | 42     | 25                                                                         | 0      | 141  | 0        | 0        | 4      | 0     | 0     | 160   | 0      | 394     | 22       | 43    | 25  | 0        | 141    | 0      | 0     | 4   | 0     | 0    | 160    | 0      | 395         | 1960             | 275    | 1068                                    | 354  | 1645   |        |
| 8:30  | 27      | 31     | 18                                                                         | 0      | 175  | 0        | 0        | 0      | 0     | 2     | 249   | 0      | 502     | 27       | 31    | 18  | 0        | 175    | 0      | 0     | 0   | 0     | 2    | 249    | 0      | 502         | 2084             | 294    | 1087                                    | 407  | 1856   | 687    |
| 8:45  | 35      | 34     | 53                                                                         | 0      | 226  | 0        | 0        | 0      | 0     | 2     | 256   | 0      | 606     | 35       | 34    | 54  | 0        | 226    | 0      | 0     | 0   | 0     | 2    | 256    | 0      | 607         | 1944             | 247    | 1097                                    | 6067 | 1999   | 612    |
| 9:00  | 27      | 44     | 62                                                                         | 0      | 340  | 0        | 0        | 19     | 0     | 1     | 387   | 0      | 880     | 27       | 44    | 62  | 0        | 340    | 0      | 0     | 19  | 0     | 1    | 387    | 0      | 880         | 2384             | 250    | 1066                                    |      |        | 832 3  |
| 9:15  | 7       | 23     | 51                                                                         | 0      | 411  | 1        | 0        | 0      | 0     | 6     | 467   | 0      | 966     | 7        | 23    | 51  | 0        | 411    | 1      | 0     | 0   | 0     | 6    | 467    | 0      | 966         | 2955             | 294    | 1085                                    | 810  | 67     | 863 3  |
| 9:30  | 50      | 24     | 44                                                                         | 0      | 314  | 2        | 0        | 0      | 0     | 10    | 284   | 0      | 728     | 50       | 24    | 44  | 0        | 314    | 2      | 0     | 0   | 0     | 10   | 286    | 0      | 730         | 3183             | 314    | 1105                                    | 536  | 2      | 786 3  |
| 9:45  | 0       | 21     | 100                                                                        | 0      | 224  | 1        | 0        | 5      | 0     | 0     | 172   | 0      | 523     | 0        | 21    | 100 | 0        | 224    | 1      | 0     | 5   | 0     | 0    | 172    | 0      | 523         | 3099             | 4180   |                                         | 517  | 1      | 836 3  |
| 10:00 | 21      | 51     | 31                                                                         | 0      | 169  | 1        | 0        | 6      | 0     | 0     | 86    | 0      | 365     | 21       | 51    | 31  | 0        | 169    | 1      | 0     | 6   | 0     | 0    | 86     | 0      | 365         | 2584             | 0.8557 |                                         | 570  | 2433   | 1043 3 |
| 10:15 | 50      | 57     | 99                                                                         | 0      | 187  | 1        | 0        | 0      | 0     | 2     | 100   | 0      | 496     | 50       | 57    | 99  | 0        | 187    | 1      | 0     | 0   | 0     | 2    | 100    | 0      | 496         | 2114             | 408    |                                         | 361  | 1790   | 1367 5 |
| 10:30 | 61      | 79     | 112                                                                        | 0      | 305  | 3        | 0        | 2      | 0     | 2     | 365   | 0      | 929     | 61       | 79    | 112 | 0        | 305    | 3      | 0     | 2   | 0     | 2    | 365    | 0      | 929         | 2313             | 398    |                                         | 484  | 1757   | 1039 5 |
| 10:45 | 36      | 89     | 121                                                                        | 0      | 234  | 0        | 0        | 35     | 0     | 4     | 147   | 0      | 666     | 36       | 89    | 121 | 0        | 234    | 0      | 0     | 35  | 0     | 4    | 147    | 0      | 666         | 2456             | 460    | 4744                                    | 551  | 1738   | 847 5  |
|       | 355     | 665    | 844                                                                        | 0 3    | 3441 | 13       | 0        | 89     | 0     | 42    | 3561  | 0      | 9010    | 355      | 666   | 845 | 0 :      | 3446   | 13     | 0     | 89  | 0     | 42   | 3564   | 0      | 9020        | <b>6</b>         | 454    | 1757                                    | 547  | 1904   | 1017 4 |
| P.M., | 112120  | 13     |                                                                            |        |      | -        |          |        |       |       |       |        |         | 07       | ~     | -   |          | -      | -      |       |     | ~     |      |        | -      |             |                  | 430    | 1789                                    | 424  | 2006   | 383 3  |
| 14.00 | 9/      | 21     | 20                                                                         | 0      | 200  | 0        | 0        | 4      | 0     | 4     | 203   | 0      | 020     | 97       | 21    | 20  | 0        | 200    | 0      | 0     | 4   | 0     | 4    | 203    | 0      | 620         |                  | 499    | 1823                                    | 478  | 2000   | 875 3  |
| 14.13 | 20      | 21     | 04                                                                         | 0      | 212  | 4        | 0        | 0      | 0     | 0     | 233   | 0      | 129     | 02       | 20    | 04  | 0        | 212    | 2      | 0     | 0   | 0     | 0    | 239    | 0      | 132         |                  | 455    | 1838                                    | 405  | 1301   | 14979  |
| 14.30 | 40      | 19     | 37                                                                         | 0      | 200  | 2        | 0        | 5      | 0     | 0     | 100   | 0      | 5/3     | 10       | 21    | 15  | 0        | 211    | 2      | 0     | 5   | 0     | 0    | 100    | 0      | 520         | 2464             | 494    | 1878                                    | 251  | 1646   |        |
| 15.00 | 10      | 20     | 43                                                                         | 0      | 240  | 2<br>E   | 0        | 0      | 0     | 4     | 244   |        | 720     | 10       | 20    | 43  | 0        | 240    | 2      | 0     | 0   | 0     | -    | 245    | 0      | 722         | 2404             | 411    | 1859                                    | 252  | 1420   |        |
| 15-15 | 63      | 34     | 47                                                                         | 0      | 346  | 5        | 0        | 0      | 0     | 4     | 508   | 0      | 1003    | 64       | 34    | 44  | 0        | 340    | 5      | 0     | 0   | 0     | 0    | 508    | 0      | 1007        | 2842             | 446    | 1806                                    | 250  | 1158   |        |
| 15-30 | 106     | 0.9    | 74                                                                         | ő      | 444  | 0        | 0        | 0      | 0     | 0     | 552   | 0      | 1271    | 107      | 00    | 72  | 0        | 446    | 0      | 0     | 0   | 0     | 0    | 552    | 0      | 1276        | 3538             | 379    | 1730                                    | 7290 |        |        |
| 15-45 | 124     | 52     | 00                                                                         | 0      | 340  | 4        | õ        |        | 0     | 0     | 464   | 0      | 1081    | 124      | 52    | 117 | 0        | 340    | 4      | 0     |     | 0     | 0    | 466    | 0      | 1101        | 4107             | 459    | 1695                                    |      |        |        |
| 16:00 | 60      | 59     | 99                                                                         | 0      | 533  | 8        | õ        | 0      | 0     | 12    | 594   | 0      | 1365    | 60       | 59    | 102 | 0        | 533    | 8      | 0     | 0   | 0     | 12   | 596    | 0      | 1370        | 4754             | 388    | 10/2                                    |      |        |        |
| 16:15 | 26      | 53     | 61                                                                         | 0      | 320  | 2        | 0        | 0      | 0     | 0     | 348   | 0      | 810     | 26       | 53    | 62  | 0        | 320    | 2      | 0     | 0   | 0     | 0    | 349    | 0      | 812         | 4559             | 301    | 1398                                    |      |        |        |
| 16:30 | 72      | 74     | 86                                                                         | 0      | 309  | 2        | 0        | 0      | 0     | 5     | 380   | 0      | 928     | 72       | 74    | 86  | 0        | 309    | 2      | 0     | 0   | 0     | 5    | 380    | 0      | 928         | 4211             | 6677   |                                         |      |        |        |
| 16:45 | 12      | 42     | 70                                                                         | 0      | 191  | 2        | 0        | 0      | 0     | 0     | 200   | 0      | 517     | 12       | 42    | 70  | 0        | 191    | 2      | 0     | 0   | 0     | 0    | 200    | 0      | 517         | 3627             | 100000 |                                         |      |        |        |
| 17:00 | 88      | 18     | 45                                                                         | 0      | 279  | 3        | 0        | 0      | 0     | 0     | 375   | 0      | 808     | 88       | 18    | 47  | 0        | 281    | 3      | 0     | 0   | 0     | 0    | 377    | 0      | 814         | 3071             |        |                                         |      |        |        |
| 17:15 | 32      | 99     | 129                                                                        | 0      | 116  | 1        | 0        | 7      | 0     | 0     | 77    | 0      | 461     | 32       | 99    | 129 | 0        | 118    | 1      | 0     | 7   | 0     | 0    | 79     | 0      | 465         | 2724             |        |                                         |      |        |        |
| 17:30 | 59      | 33     | 85                                                                         | 0      | 263  | 14       | 0        | 0      | 0     | 3     | 345   | 0      | 802     | 59       | 36    | 85  | 0        | 263    | 14     | 0     | 0   | 0     | 3    | 345    | 0      | 805         | 2601             |        |                                         |      |        |        |
| 17:45 | 14      | 99     | 130                                                                        | 0      | 207  | 1        | 0        | 0      | 0     | 1     | 286   | 0      | 738     | 14       | 99    | 130 | 0        | 207    | 1      | 0     | 0   | 0     | 1    | 287    | 0      | 739         | 2823             |        |                                         |      |        |        |
|       | 916     | 788    | 1132                                                                       | 0 4    | 1518 | 53       | 0        | 17     | 0     | 37    | 5497  | 0      | 12958   | 920      | 795   |     | 0 .      | 4534   | 53     | 0     | 17  | 0     | 37   | 5508   | 0      | 13021       | 00000            |        |                                         |      |        |        |
| Peak  | Hour    | hopros | ach V                                                                      | alumes |      |          |          |        |       |       |       |        |         |          |       |     | 1503     | 22.01  | (2073) | 03562 |     | 2     | 0730 |        | 11.54  | -1870.<br>  |                  |        |                                         |      |        |        |
| CdK-  | A sec   | -ppro- | Off VC                                                                     | numes  |      |          | 255      | 244    | 225   |       |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
|       | 119     | 125    | 211                                                                        | -      | 1    |          | 355      | 244    | 335   | -     |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
| 0     | AM      | 3183   | -                                                                          | 0      |      | 0        | PM       | 4/54   | 15    | 4000  |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
| 1396  | 8.      | 43-9.4 | 2                                                                          | 1291   |      | 2122     | 15.1     | 13-16: | 10    | 1008  |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
| 19    | PHE     | 0.82   |                                                                            | 3      |      | 15       | PHE      | 0.87   | 0     | 14    |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |
|       | 0       | 19     | 0                                                                          |        |      |          | 0        | 1      | 0     |       |       |        |         |          |       |     |          |        |        |       |     |       |      |        |        |             |                  |        |                                         |      |        |        |

## II. Traffic Counts and Data

#### **Traffic Count & Analysis**

- Historical traffic counts at study area were also analyzed for growth trend and
- Intersections annual traffic growth rates as well.

|                                               | Ta     | ble 2  | : Cer  | ntral I | Park T                | raffic | Stud<br>(E | y - I<br>By A | nterse<br>pproa | ction T<br>ch & B | urning Mo<br>y Intersect | veme<br>ion) | ents   | and    | Grow           | th Ra     | ates A  | naly   | sis      |              |        |
|-----------------------------------------------|--------|--------|--------|---------|-----------------------|--------|------------|---------------|-----------------|-------------------|--------------------------|--------------|--------|--------|----------------|-----------|---------|--------|----------|--------------|--------|
|                                               |        |        |        | Bown    | an / Sizt             | th St. |            |               |                 |                   |                          |              |        |        | 3 <b>ov</b> ma | • / Firs  | t St.   |        |          |              |        |
|                                               |        | -      |        |         |                       |        |            |               |                 |                   |                          |              |        |        |                |           |         |        |          |              |        |
| AM Pea                                        | k Hou  | r      |        |         | _                     | PM Pe  | ak Hou     | •             |                 |                   | AM Peak                  | Hour         |        |        |                | -         | PM Pe   | ak Hou | r        |              |        |
|                                               | 12     | 34     | 110    | 3       | 01                    | 60     | n          | 221           | 21              | 10                |                          | 15           | - 1(   | 33     | 3              | 40        |         | 34     | 135      | 32           | 42     |
| 2004                                          | 41     |        | 197    |         | 20                    | 70     |            | 877           |                 | 96                | 2004                     | 10           |        | 264    |                | 10        | 10      |        | 875      |              | 60     |
| 2004                                          | 46     |        | 401    |         | 6                     | 20     |            | 011           |                 | 10                | 2004                     | 46           |        | 004    |                | 2         | 20      |        | 515      |              | 500    |
|                                               |        | 7      | 120    | 6       | *                     | 20     |            | 242           | 23              | 16                |                          | 15           | 8      | 115    | 9              |           | 67      |        | 150      | 12           | ,      |
| -                                             | -      | 48     | 118    | 11      | -                     | -      | 79         | 155           | 17              | -                 | -                        | -            | 12     | 92     | 8              | -         | -       | 28     | 100      | 22           | -      |
|                                               | 48     | 40     | 110    |         | 15                    | 81     | 10         |               |                 | 18                |                          | 12           | 16     | ~~     |                | 10        | 14      | 20     | 161      | ce           | 23     |
| 2040                                          | 24     |        | 475    |         | 28                    | 28     |            | 600           |                 | 25                | 2008                     | 28           |        | 300    |                | 22        | 62      |        | 166      |              | 43     |
| 2010                                          | 7      |        | 415    |         | 7                     | 6      |            | 020           |                 | 10                | 2000                     | 16           |        | 000    |                | 3         | 13      |        |          |              | 9      |
|                                               |        | 6      | 105    | 8       |                       | ~      | 6          | 17.9          | 15              | 10                |                          | 10           |        | 75     | 13             | ~         | 15      | 15     | 96       | 20           | ×      |
|                                               |        | 5.92   | -5.92  | 3.42    |                       | -      | 182        | -5.72         | .7 42           | 8                 |                          | -            | -8.32  | -0.32  | .2.92          | -         | -       | -4.72  | -2.72    | .8.92        |        |
| avo                                           | 0.4%   |        |        |         | -5.52                 | 4.62   |            |               |                 | -13.2%            | avo                      | 0.02         |        |        |                | -6.32     | -1.72   |        |          | (In Contrast | -11.2% |
| annual                                        | -3.52  |        | .0.8%  | 8       | 2.92                  | -14.62 |            | -5.69         | 6               | -11.7%            | annual                   | -3.62        |        | 4.7%   |                | -4.12     | 2.62    |        | -5.19    | -            | -8.72  |
| arouth                                        | 15.22  |        | -0.0%  | 2       | 2.65                  | -18.22 |            | -0.01         |                 | -3.02             | arouth                   | 5.32         |        |        |                | -19.15    | -15.15  |        |          | 2            | 15.82  |
| growin                                        | 10.63  | .255   | 2.02   | 4.95    | 6.0%                  | -10.69 | .9.62      |               | .9 12           | -90.014           | growin                   | 2.0%         | 3.02   | -10.15 | 9.65           | -19.19    | - 10.1% | 8.12   | -10.62   | 11.45        | 10.00% |
|                                               |        | 10.014 | 6.015  | 4.04    | the supervised states | -      | -0.04      | -9.94         |                 |                   | _                        |              | 0.04   | -10,14 | 0.0%           |           | -       | 0.14   | 10.04    | 1045         | _      |
|                                               | -      |        |        | Bown    | an / Fift             | h St.  |            |               |                 | 1. I.I.           |                          |              |        | M      | lalberr        | y / Siz   | th St.  |        |          | _            |        |
| AM Pea                                        | k Hou  | r      |        |         |                       | PM Pe  | ak Hou     | r             |                 |                   | AM Peak                  | Hour         |        |        |                |           | PM Pe   | ak Hou | ır       |              |        |
|                                               |        | 12     | 142    | 6       |                       |        | 19         | 214           | 16              | 10                |                          |              | 14     | 227    | 66             |           |         | 24     | 261      | 70           | -232   |
|                                               | 11     |        |        |         | 8                     | 18     |            |               |                 | 10                |                          | 30           |        |        |                | 75        | 51      |        |          |              | 36     |
| 2002                                          | 27     |        | 429    |         | 50                    | 53     |            | 682           |                 | 85                | 2002                     | 38           |        | 618    |                | 69        | 56      |        | 795      |              | 11     |
|                                               | 2      |        |        |         | 14                    | 4      |            |               |                 | 34                |                          | 6            |        |        |                | 15        | 23      |        |          |              | 18     |
|                                               |        | 2      | 131    | 24      | -                     |        | 7          | 183           | 39              |                   |                          | _            | 17     | 59     | 2              |           | _       | 7      | 33       | 7            | -      |
|                                               |        | 13     | 112    | 4       |                       |        | 21         | 160           | 8               |                   |                          |              | 16     | 191    | 54             |           |         | 20     | 264      | 75           | -      |
| 10000                                         | 14     |        |        |         | 13                    | 13     |            |               |                 | 8                 | 1.000                    | 26           |        |        |                | 49        | 49      |        |          |              | 94     |
| 2009                                          | 20     |        | 433    |         | 47                    | 26     |            | 527           |                 | 57                | 2007                     | 22           |        | 482    |                | 60        | 63      |        | 783      |              | 78     |
|                                               | 2      |        |        |         | 55                    | 5      |            |               |                 | 22                |                          | 9            |        |        |                | 9         | 36      |        |          |              | 21     |
| 3                                             | _      | 8      | 143    | 35      |                       |        | 3          | 176           | 22              |                   |                          | _            | 6      | 40     | 0              | _         | _       | 5      | 75       | 3            | 1      |
|                                               |        | 1.2%   | -3.3%  | -5.6%   |                       |        | 1.43       | -4.13         | -9.4%           |                   | 12                       |              | 2.73   | -3.4%  | -3.3%          |           |         | -3.6%  | 0.2%     | 1.43         |        |
| avg                                           | 3.5%   |        |        |         | 7.2%                  | 0.8%   |            |               |                 | -3.1%             | avg                      | -2.8%        |        |        |                | -8.2%     | -0.8%   |        |          |              | -0.4%  |
| annual                                        | -4.2%  |        | 0.1%   |         | -0.3%                 | -9.7%  |            | -3.69         | 6               | -5.5%             | annual                   | -10.4%       |        | -4.8%  |                | -2.8%     | 2.4%    |        | -0.39    |              | 0.3%   |
| growth                                        | 0.0%   |        |        |         | 6.7%                  | 3.2%   |            |               |                 | -6.0%             | growth                   | 8,4%         |        | u      |                | -9.7%     | 4.4%    |        | 14110010 | 1100000      | 3.5%   |
|                                               |        | 21,3%  | 1,3%   | 5.5%    |                       |        | -11.4%     | -0.6%         | -7.9%           | 1                 |                          |              | -18.8% | -7.5%  | 0.0%           |           |         | -6.5%  | -5.4%    | -15.6%       |        |
| NATION AND AND AND AND AND AND AND AND AND AN |        | an 11  |        | Bown    | an / Thir             | d St.  |            |               |                 |                   |                          |              | a 1    |        | Valae          | l / Sixth | St.     |        |          |              |        |
| AM Pea                                        | k Hou  | r      |        |         |                       | PM Pe  | ak How     | •             |                 |                   | AM Peak                  | Hour         |        |        |                |           | PM Pe   | ak Hou | ır       |              |        |
|                                               |        | 20     | 131    | 6       |                       |        | 52         | 155           | 12              |                   |                          |              | 0      | 0      | 0              |           |         | 0      | 0        | 0            |        |
|                                               | 10     |        |        |         | 12                    | 20     |            |               |                 | 5                 | 1.5                      | 0            |        |        |                | 0         | 0       |        |          |              | 0      |
| 2008                                          | 37     |        | 441    |         | 48                    | 38     |            | 548           |                 | 41                | 2006                     | 94           |        | 240    |                | 120       | 162     |        | 381      |              | 173    |
|                                               | 19     |        |        |         | 25                    | 13     |            |               |                 | 27                |                          | 0            |        |        |                | 0         | 0       |        |          |              | 0      |
|                                               |        | 13     | 101    | 19      |                       |        | 23         | 165           | 24              |                   |                          |              | 14     | 0      | 12             |           |         | 26     | 0        | 20           |        |
|                                               | -      | 8      | 35     | 3       |                       |        | 3          | 136           | 14              |                   |                          |              | 0      | 0      | 0              |           |         | 0      | 0        | 0            |        |
|                                               | 6      |        |        |         | 5                     | 6      |            |               |                 | 14                |                          | 0            |        |        |                | 0         | 0       |        |          |              | 0      |
| 2011                                          | 20     |        | 261    |         | 16                    | 16     |            | 336           |                 | 17                | 2007                     | 70           |        | 193    |                | 88        | 106     |        | 312      |              | 142    |
|                                               | 13     |        |        |         | 3                     | 20     |            |               |                 | 10                |                          | 2            |        |        |                | 1         | 3       |        |          |              | 2      |
|                                               |        | 7      | 81     | 4       |                       |        | 17         | 73            | 10              |                   |                          |              | 20     | 0      | 12             |           |         | 34     | 0        | 25           |        |
|                                               |        | -26.3% | -10.2% | -20.6%  |                       |        | -50.7%     | -4.3%         | 5.3%            |                   |                          |              | 0.0%   | 0.0%   | 0.0%           |           |         | 0.0%   | 0.0%     | 0.0%         |        |
| avg                                           | -15.7% |        |        |         | -25.3%                | -33.1% |            |               |                 | 40.9%             | avg                      | 0.0%         |        |        |                | 0.0%      | 0.0%    |        |          |              | 0.0%   |
| annual                                        | -18.5% |        | 16.09  | 6       | -30.7%                | -25.0% | 1 1        | -15.0         | %               | -25.4%            | annual                   | -25.5%       | -      | 19.6%  | 0              | -26.7%    | -34.6%  | 3      | 18.1     | %            | -17.9% |
| growth                                        | -11.9% |        |        |         | -50.7%                | 15.4%  |            |               |                 | -28.2%            | growth                   |              |        |        |                |           |         |        |          |              |        |
| 1000                                          |        | -18.6% | -7.1%  | -40.5%  |                       |        | -9.6%      | -23.8%        | -25.3%          |                   |                          |              | 42.3%  | 0.0%   | 0.0%           |           |         | 30.8%  | 0.0%     | 25.0%        |        |

The operational efficiency of traffic is measured using the concept of "Level of Service" (LOS) contained in the "Highway Capacity Manual"

|         |          |       |           | Travel 1 | <sup>ri</sup> me / Veh | ide   |
|---------|----------|-------|-----------|----------|------------------------|-------|
|         |          | Ave   | rage Spee | d        | Seconds                | LOS   |
| Stopper | Delay/Ve | hicle | MPH       | LOS      | < 5                    | A / B |
| Stoppet |          |       | 20 to 30  | A / B    | 5 to 25                | С     |
| Color   | Seconds  | LOS   | 2010 30   | A / D    | 25 to 45               | D     |
|         | < 5      | A/B   | 15 to 20  | С        | 45 to 60               | F     |
|         | 5 to 25  | С     | 10 to 15  | D        | > 60                   |       |
|         | 25 to 45 | D     | 5 to 10   | Е        | 200                    | Г     |
|         | 45 to 60 | E     | < 5       | F        |                        |       |
|         | > 60     | F     | 1         |          |                        |       |

LOS "C" or better is considered desirable in the Mansfield urbanized areas.

### **Street's Segments Level of Service Analysis:**

- With HCM method, the calculation of arterial's segments level of service is based on the information of the <u>travel speed</u> and <u>travel time</u>.
- <u>The street's travel time</u> = running time + signal delay
- <u>Arterial speed</u> = the distance / travel Time

Based on the peak hour traffic volume analysis. Approach traffic, intersection turning movements at peak time and total traffic in and out at each intersection were adjusted for the model and simulation model Table 1: Central Park Traffic Study - Peak Hour (PM) Traffic and Turning Movements Analysis for Intersections at Study Area

|                              | Bowman Mult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | berry St. Wal                                                                                                                                                                                                                                                                                                                                         | sut Stl                                                         | Main St.                                                                                                                                                                                                                                                                        | Diamond St.                                                                                                                                                                                                                                 | Adams St.                                                                                                                                                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sixth St.<br>In/Out Approch  | 79         155         17         20           81         620         18         49         35         63           6         10         36         67         10         36         10           100         6         172         13         5         5         103         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <th>264         75         0         0           783         94         0         31           0.85         21         3         ***         0.9           75         3         34         0           218         106         ***         0.9           1193         176         109         141           83         5         5         5</th> <th>0<br/>2<br/>3<br/>25<br/>0<br/>144<br/>131<br/>59</th> <th>23 502 41<br/>0 791 0<br/>58 ••• 0.88 34<br/>0 0 0<br/>127 ••• 0.88 0<br/>138 87<br/>565 0</th> <th>0 0 0 0<br/>12 887 88<br/>145 0.89 0<br/>59 429 73<br/>139 168<br/>158 0 561</th> <th>73         60         0           89         392         0           37         ₩         0.9         0           87         46         0         0           133         135         0         0           126         0         0         0           97         133         133         0</th> | 264         75         0         0           783         94         0         31           0.85         21         3         ***         0.9           75         3         34         0           218         106         ***         0.9           1193         176         109         141           83         5         5         5              | 0<br>2<br>3<br>25<br>0<br>144<br>131<br>59                      | 23 502 41<br>0 791 0<br>58 ••• 0.88 34<br>0 0 0<br>127 ••• 0.88 0<br>138 87<br>565 0                                                                                                                                                                                            | 0 0 0 0<br>12 887 88<br>145 0.89 0<br>59 429 73<br>139 168<br>158 0 561                                                                                                                                                                     | 73         60         0           89         392         0           37         ₩         0.9         0           87         46         0         0           133         135         0         0           126         0         0         0           97         133         133         0 |
| Fithth St.<br>In/Out Approch | 21         160         8         15           19         527         8         18           26         57         45           5         •••         0.96         22         20           3         176         22         0         ••           189         203         266         87         121           50         56         83         327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207         44         1         3           567         72         4         39           0.91         40         6         •••           0         9         29         34           90         218         198         7           89         101         90         90                                                                            | 3<br>7 7<br>168<br>7 21<br>30<br>45<br>196<br>124               | 52 506 67<br>0 889 0<br>78 112<br>15 ₩ 0.87 39<br>625 0<br>164 151<br>93 550 0                                                                                                                                                                                                  | 0 0 0 0<br>15 1059 14<br>149 0.81 0<br>0 791 5<br>0 85 99<br>164 0 766                                                                                                                                                                      | 22 100 32<br>14 575 27<br>83 90<br>21 0.85 21<br>45 109 11<br>154 150 138<br>118 126                                                                                                                                                                                                         |
| Fouth St.                    | 8         247         7         19           13         737         24         0           41         17         139         35           28         259         32         0           26         259         32         0           262         296         285         30           53         71         130           85         80         174           308         319         321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250 16 6 45<br>610 0 23 100<br>111 503<br>0.88 36 9 ⊷ 0:<br>4 0 6 83<br>4 147 313<br>155 535<br>4 62                                                                                                                                                                                                                                                  | 6<br>6<br>301<br>7<br>4<br>313<br>512<br>92                     | 0         261         897         13           0         26538         0         392           11         ++         0.78         7           0         0         0         1           1536         0         316         299           403         405         1515         0 | 0         2         0           40         812         17           85         69         0           78         500         21           2         557         86           125         106         2                                      | 5         128         5           5         434         17           66         55         16         55           16         0.9         17           138         118         75         89           67         67         80         80                                                   |
| India St.                    | 25         155         12         19           20         548         5         0           33         +**         0.88         27         38         +**           23         165         24         0         39         -**         0.88         27         38         +**           23         165         24         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 271 19 4 42<br>493 4 8 38<br>59 79<br>0.8 19 0 *** 0.7<br>3 0 0 12<br>7 48<br>82 114<br>80 87<br>3 46                                                                                                                                                                                                                                                 | 2 2<br>7 1<br>110<br>8 4<br>5 12<br>134<br>115<br>93<br>137     | 5         1242         0           0         1311         0           38         17         17           4         rev         0.79         5           0         0         0         1247           22         22         22           42         38         1251         0    | 0 5 0<br>24 709 21<br>34 49<br>0 $\stackrel{*}{=}$ 0.95 0<br>30 532 14<br>5 577<br>79 70<br>58 48                                                                                                                                           | 3         136         14           6         335         13           16         17         17           20         w         0.79         10           17         73         10           153         92         37         40           42         40         166         100              |
| Parts Ave.                   | 51         81         22         355           0         PM         1258         61         0           269         335         2122         2122           14         ***         0.85         217         15         ***           116         829         9         0         0           154         129         934         934           283         320         2137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 244 335 8 22<br>4754 0 37 124<br>1668 529 0<br>1 0 17 36<br>1 1682 559<br>2457 580                                                                                                                                                                                                                                                                    | 9<br>534<br>4<br>7<br>17<br>82<br>550<br>555                    | 94         516         58           0         1878         0           446         ++         0.94         170           0         0         0         0           668         0         534         610           600         504         504         504                      | 0 0 0<br>73 2433 50<br>668 761<br>1 ••• 0.75 0<br>107 664 59<br>0 807 811<br>772 757                                                                                                                                                        | 16 455 31<br>13 5308 34<br>1830 2246<br>54 ++ 0.71 53<br>252 449 102<br>502 496<br>2287 2333<br>1897 1963                                                                                                                                                                                    |
| Second St. Assessed          | 312         208         273           0         171         26         144           0         PM         541         66         0           0         195         15         68         7         ##           0         195         15         68         7         ##           0         195         15         68         7         ##           0         195         15         68         7         ##           0         195         15         68         7         ##           0         197         251         134         276         879           0         30         41         63         40         603           239         210         603         603         603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         44           590         145         1         16           1150         0         33         28           0.86         6         2         0         9           38         20         9         38         20           70         51         7         51         7           8         233         185         7         138         24 | 70<br>1<br>9<br>21<br>50<br>4<br>4<br>0<br>63<br>75<br>151<br>9 | o40         0           1         1371         0           0         1589         0           7                                                                                                                                                                                 | 1 0 23 2<br>0 806 44<br>0 150<br>0 28 559 0<br>28 559 0<br>178 5<br>0 23 587<br>23 587                                                                                                                                                      | 562         576           64         88         0           0         306         11           0         0.81         0           152         86         73           0         88         81                                                                                                |
| First St. Ammorb             | 28         121         22         17           14         466         23         4           62         43         94           13         •••         0.81         9           15         96         20         30           166         75         61           29         104         116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93         12         7         0           380         1         9         32           0.86         2         0         •••         0.8           62         33         0         0         0           67         31         31         31           4         139         270         0         0                                                 | 24<br>8 5<br>5 0<br>0<br>14 27<br>285                           | 5         939         101           0         1761         0           50                                                                                                                                                                                                       | 19         0         0           802         1087         0           75         0         0           19         0.86         0           19         971         0           19         971         0           899         22         460 | 0 81 9<br>70 345 0<br>131 0<br>8 *** 0.82 0<br>90 114 0<br>209 80 45 142                                                                                                                                                                                                                     |

The modeling study with forecasting demand model identified the LOS changes to all adjacent streets in the study area under No-Build and Build conditions.



The model forecasted traffic percentage changes on street segments between No-Build and Build conditions.



III.Traffic Operation Modeling & Simulation (No-Build vs. Build)Traffic Impact Study – OD Trips Analysis at Selected TAZ

HBSP Trips to/from TAZ containing Ontario Shopping Center Area



Maps showing the lines to and from each zone, with thicker lines representing more trips, are known as Desire Line Maps





Traffic Impact Study – OD Path Analysis (No-Build vs. Build)

Determine the trips coming from each place or zone as they traverse a specific link or a preferred path to TAZ containing the Central Park

#### No-Build



1. Average Speed Comparison - the average speed of a vehicle that has completely traversed the link is calculated as the total travel distance divided by the total travel time (miles/hour),



1. Average Speed Comparison - For each turning movement, the average speed of a vehicle that has completely traversed the link is calculated as the total travel distance divided by the total travel time for the turn movement at intersection (miles/hour),

|                | The Roadway Lovel of Service (LOS)                                    |                     |       |                     |       |             |       |          |       |               |       |  |
|----------------|-----------------------------------------------------------------------|---------------------|-------|---------------------|-------|-------------|-------|----------|-------|---------------|-------|--|
| C              | Comparing Average Speed (Cumulative) Under Scnario No-Build Vs. Build |                     |       |                     |       |             |       |          |       |               |       |  |
|                | (East-West Direction)                                                 |                     |       |                     |       |             |       |          |       |               |       |  |
| Street Segment |                                                                       | Bowman-<br>Mulberry |       | Mulberry-<br>Walnut |       | Walnut-Main |       | Main-Dia | amond | Diamond-Adams |       |  |
|                |                                                                       | No-Build            | Build | No-Build            | Build | No-Build    | Build | No-Build | Build | No-Build      | Build |  |
| 5th St.        | West Bound                                                            | С                   | С     | D                   | D     | A/B         | A/B   | E        | E     | С             | С     |  |
| 51151          | East Bound                                                            | С                   | С     | D                   | D     | E           | F     | C        | D     | С             | С     |  |
| 4th St.        | West Bound                                                            | C                   | D     | A/B                 | С     | C           | E     | E        | F     | A/B           | D     |  |
|                | East Bound                                                            | С                   | С     | F                   | F     | F           | F     | C        | D     | С             | С     |  |
| 3RD St         | West Bound                                                            | С                   | С     | C                   | D     | С           | Е     | D        | D     | D             | D     |  |
| 5112 51        | East Bound                                                            | С                   | С     | A/B                 | С     | E           | E     | С        | С     | С             | С     |  |
| N Park St      | West Bound                                                            |                     |       |                     |       |             |       | D        | E     |               |       |  |
| N Furk St.     |                                                                       |                     |       |                     |       |             |       |          |       |               |       |  |
| Dark Avo       | West Bound                                                            | С                   | С     | D                   | D     | E           | D     | С        | Cut   | С             | С     |  |
| Full AVC.      | East Bound                                                            | С                   | С     | D                   | E     | A/B         | D     | D        | Off   | D             | D     |  |
| S Dark St      |                                                                       |                     |       |                     |       |             |       |          |       |               |       |  |
| J Fark St.     | East Bound                                                            |                     |       |                     |       |             |       | C        | F     |               |       |  |
| 2nd St         | West Bound                                                            | С                   | С     | D                   | F     | C           | D     | E        | E     | С             | С     |  |
| 2110 51.       | East Bound                                                            | E                   | D     | С                   | С     | D           | D     | E        | E     | С             | С     |  |
| 1 et St        | West Bound                                                            | С                   | С     | D                   | D     | A/B         | С     | D        | D     | C             | D     |  |
| ISCOL.         | Fast Bound                                                            | D                   | D     | A/B                 | A/B   | F           | F     | D        | D     | C             | D     |  |

| Average Speed |          |       |  |  |  |  |  |  |  |
|---------------|----------|-------|--|--|--|--|--|--|--|
| Color         | MPH      | LOS   |  |  |  |  |  |  |  |
|               | 20 to 30 | A / B |  |  |  |  |  |  |  |
|               | 15 to 20 | С     |  |  |  |  |  |  |  |
|               | 10 to 15 | D     |  |  |  |  |  |  |  |
|               | 5 to 10  | Е     |  |  |  |  |  |  |  |
|               | < 5      | F     |  |  |  |  |  |  |  |

Simulation of Average Speed and Roadway LOS Changes Under Build and No-Build Conditions in Large Scale

| Build | No-Build |       |            |       |
|-------|----------|-------|------------|-------|
|       |          |       |            |       |
|       |          | Av    | erage Spee | d     |
|       |          | Color | MPH        | LOS   |
|       |          |       | 20 to 30   | A / B |
|       |          |       | 15 to 20   | С     |
|       |          |       | 10 to 15   | D     |
|       |          |       | 5 to 10    | E     |
|       |          |       |            | _     |

2. Travel Time Comparison - For each turning movement, average travel time for a vehicle to traverse the link. Calculated as the total travel time for the specified turn movement divided by the vehicle trips for the specified turning movement (Seconds/Vehicle).

![](_page_31_Picture_2.jpeg)

2. Travel Time Comparison - For each turning movement, average travel time for a vehicle to traverse the link. Calculated as the total travel time for the specified turn movement divided by the vehicle trips for the specified turning movement (Seconds/Vehicle).

|            |            |                     |       | (E                  | East-Wes | t Direction | )           |          |       |               |       |
|------------|------------|---------------------|-------|---------------------|----------|-------------|-------------|----------|-------|---------------|-------|
| Street     | Segment    | Bowman-<br>Mulbuary |       | Mulbuary-<br>Walnut |          | Walnut      | Walnut-Main |          | amond | Diamond-Adams |       |
|            |            | No-Build            | Build | No-Build            | Build    | No-Build    | Build       | No-Build | Build | No-Build      | Build |
| 5th St     | West Bound | С                   | С     | С                   | С        | С           | С           | D        | D     | С             | С     |
| 50150      | East Bound | D                   | D     | С                   | С        | A/B         | D           | С        | С     | С             | С     |
| Ath Ct     | West Bound | F                   | D     | С                   | D        | С           | A/B         | E        | F     | D             | D     |
| 40150.     | East Bound | D                   | D     | E                   | E        | E           | E           | С        | A/B   | A/B           | D     |
| 200.04     | West Bound | D                   | A/B   | С                   | С        | С           | D           | A/B      | С     | С             | D     |
| 3KD St.    | East Bound | С                   | С     | A/B                 | D        | С           | С           | A/B      | A/B   | A/B           | С     |
| N Davis Ct | West Bound |                     |       |                     |          |             |             | A/B      | С     |               |       |
| N Park St. |            |                     |       |                     |          |             |             |          |       |               |       |
| Deals Arra | West Bound | С                   | С     | D                   | С        | С           | С           | С        | Cut   | С             | С     |
| Park Ave.  | East Bound | D                   | D     | D                   | С        | С           | D           | С        | Off   | D             | D     |
|            |            |                     |       |                     |          |             |             |          |       |               |       |
| S Park St. | East Bound |                     |       |                     |          |             |             | A/B      | E     |               |       |
| 2-10       | West Bound | D                   | С     | С                   | С        | A/B         | A/B         | E        | С     | С             | С     |
| 2nd St.    | East Bound | F                   | D     | D                   | С        | С           | С           | E        | С     | С             | С     |
| 4-1-01     | West Bound | D                   | A/B   | A/B                 | A/B      | A/B         | A/B         | С        | С     | A/B           | A/B   |
| 1st St.    | East Bound | С                   | С     | С                   | С        | С           | С           | С        | С     | D             | C     |

Comparing Travel Time Under Scnario No-Build Vs. Build

The Roadway Lovel of Service (LOS)

| Average Speed |          |       |  |  |  |  |  |  |  |
|---------------|----------|-------|--|--|--|--|--|--|--|
| Color         | MPH      | LOS   |  |  |  |  |  |  |  |
|               | 20 to 30 | A / B |  |  |  |  |  |  |  |
|               | 15 to 20 | С     |  |  |  |  |  |  |  |
|               | 10 to 15 | D     |  |  |  |  |  |  |  |
|               | 5 to 10  | Е     |  |  |  |  |  |  |  |
|               |          |       |  |  |  |  |  |  |  |

#### **IV.** Potential Crashes Simulation

#### Target Area #1-Potential Hot Spot Locations Identified by Model

![](_page_33_Picture_2.jpeg)

#### Target Area #1 - Potential Crash Location & the Cause of Crash

![](_page_34_Picture_2.jpeg)

Target Area #1

Potential Hot Spot Location Caused by Limited Sight Distance.

🔍 100% 🛛 👻

Target Area #1- a. The Linear Distance between Two Intersections (Center ) Is 170 Feet

![](_page_35_Picture_2.jpeg)

#### Target Area #2 Potential Crash Locations & the Cause of Crash

![](_page_36_Picture_2.jpeg)

![](_page_37_Picture_1.jpeg)

**Target Area #2** 

#### Target Area #2

Weaving maneuver and potential crash caused by insufficient length of street.

Target Area #2- a. The Linear Distance between Two Intersections (Center ) is 164 Feet

![](_page_38_Picture_2.jpeg)

Target Area #2b. Potential crash caused by insufficient length of street due to<br/>weaving maneuver between closed intersections

Emergency Deceleration No Accelera.

Acceleration

![](_page_39_Picture_3.jpeg)

Target Area #3 - Potential Crash Locations & the Cause of Accident

![](_page_40_Picture_2.jpeg)

![](_page_41_Picture_1.jpeg)

Target Area #3- a. The Linear Distance between Two Intersections (Center ) Is 162 Feet

![](_page_42_Picture_2.jpeg)

 Target Area #3
 b. Potential incident caused by insufficient length for weaving.

Emergency
Deceleration
No Accelera.

![](_page_43_Picture_3.jpeg)

#### V. Conclusion of Simulation Study

In planning process, the use of travel demand model and simulation helps

- <u>analyzing traffic impact and visualizing dynamic</u> <u>network performance for proposed transportation</u> <u>planning projects</u>
- providing community and decision makers with sensible information for transportation improvement decisions.

### **FHWA Traffic Simulation Modeling Guidelines and Tools**

#### http://www.ops.fhwa.dot.gov/trafficanalysistools

#### Edit View Favorites Tools Help 🗿 StanNet Splash 🕦 Stantec.com 🗿 HEAT Self Service 🕬 FCm Travel Client Portal L... 🎹 Lexington, KY local news ... 🕥 TRB Highway Capacity an... 🚾 Weather\_LEX 🕨 Bing 🗿 Google U.S. Department of Transportation FHWA Home | Feedback Federal Highway Administration TRAFFIC ANALYSIS OOLS PROGRAM OFFICE OF OPERATIONS 21<sup>st</sup> CENTURY OPERATIONS USING 21<sup>st</sup> CENTURY TECHNOLOGIES Traffic Analysis Tools Search Traffic Analysis Tools: Go The Traffic Analysis Tools Program was formulated by FHWA in an attempt to strike a balance between efforts to develop new, improved tools in New Guidelines Material support of traffic operations analysis and efforts to facilitate the deployment and use of existing tools. FHWA has established two tracks under the Home Traffic Analysis Tools Program: the deployment track and the development track. Guide for Highway Capacity and Tools Operations Analysis of Active Transportation and Demand FAOs Management Strategies Deployment Track Links Contact Us This track concentrates on the needs and concerns of the traffic analysis stakeholder community: FHWA Leaflet on Work Zone lesources Analysis Guidance Next-Generation Brief, easy-to-read overview of Simulation (NGSIM) Volume I: Traffic Analysis Tools Primer (HTML, PDF 613KB) Work Zone Analysis and how • What's in this Volume? Dynamic Traffic modeling and simulation can be Assignment used as part of the analysis. (Dynasmart-P) Volume II: Decision Support Methodology for Selecting Traffic Analysis Tools (<u>HTML</u>, <u>PDF</u> 1.3MB) Includes three short examples. Decision Support Methodology Automated Tool (HTML, XLS 786KB) ITS Deployment Analysis System • What's in this Volume? (IDAS) Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software (HTML, PDF 1.2MB) Guidance Resources What's in this Volume? Corridor Simulation Volume IV: Guidelines for Applying CORSIM Microsimulation Modeling Software (<u>HTML, PDF</u> 7.2MB) (CORSIM/TSIS) What's in this Volume? Training & Workshops Volume V: Traffic Analysis Toolbox Case Studies - Benefits and Applications (HTML, PDF 3.2MB) What's in this Volume? Volume VI: Definition, Interpretation, and Calculation of Traffic Analysis Tools Measures of Effectiveness (<u>HTML, PDF</u> 734KB) What's in this Volume? Volume VII: Predicting Performance with Traffic Analysis Tools (<u>HTML, PDF</u> 1.7MB) What's in this Volume? Volume VIII: Work Zone Modeling and Simulation - A Guide for Decision-Makers (<u>HTML</u>, <u>PDF</u> 1.9MB) What's in this Volume? Volume IX: Work Zone Modeling and Simulation - A Guide for Analysts (HTML, PDF 15MB) What's in this Volume? Volume X: Localized Bottleneck Congestion Analysis Focusing on What Analysis Tools Are Available, Necessary and Productive for Localized Congestion Remediation (HTML, PDF 3.8MB) · What's in this Volume? Volume XI: Weather and Traffic Analysis, Modeling and Simulation (<u>HTML</u>, <u>PDF</u> 2.1MB) What's in this Volume? Volume XII: Work Zone Traffic Analysis – Applications and Decision Framework (HTML, PDF 13.4MB) What's in this Volume?

Executive Summary (HTML, PDF 583KB)

# Thank You!

![](_page_47_Picture_0.jpeg)

**Business Discussion** 

## Charter (1/3)

#### **ARTICLE II – AREA, MISSION, AND GOALS**

Section 2.1 – The area designated as that of *SimCap Louisiana* shall be the state of Louisiana.

**Section 2.2** – The Mission of *SimCap Louisiana* shall be to share information and experiences as to disseminate, promote, and develop guidance and best practices in the application of traffic simulation and capacity analysis tools, methods, and related practice areas.

**Section 2.3** – The main Goals of *SimCap Louisiana* are to:

- (1) Provide a forum for the meaningful exchange of ideas, research, questions, and trends;
- (2) Serve as a resource for practitioners and organizations by sharing experiences and developing guidance and best practices; and
- (3) Advocate for consistency, reliability, and advances to the current state-of-the-practice.

**Section 2.4** – The main Objectives of *SimCap Louisiana* are to:

- (1) Increase awareness of LADOTD initiatives, national activities and guidance, and the latest *SimCap* tools;
- (2) Increase communication of LADOTD updates and activities to stakeholders;
- (3) Provide a forum for sharing *SimCap* experiences (across organizations) and receiving feedback/answers to questions;
- (4) Provide educational opportunities to learn of more appropriate and efficient ways of conducting *SimCap* analysis; and
- (5) Become a mechanism to request education/training.

## Charter (2/3)

#### **ARTICLE VII – ACTIVITIES**

**Section 7.1** – At least four educational meetings shall be organized and held each year. Educational meetings shall include an invited speaker (internal or external) on a relevant *SimCap*-related topic and be webinar accessible.

**Section 7.2** – Each professional meeting shall have a planned agenda (with planned objectives and schedule) and disseminated to Members in adequate time to prepare and attend the meeting.

**Section 7.3** – At least two business meetings shall be held each year. These may coincide with the educational meetings.

**Section 7.4** – An electronic forum shall be established to share experiences, provide feedback, and solicit help in the practice and application of *SimCap* analysis and tools.

Section 7.5 – A Member "expertise" list shall be created and maintained.

**Section 7.6** – *SimCap Louisiana* shall participate in a joint-sponsored event at least once per year with a related, transportation-affiliated organization (e.g., ITE, WTS, Tran-SET, etc.).

## Charter (3/3)

#### **ARTICLE IV – DUES AND FEES**

Section 4.1 – SimCap Louisiana shall not collect dues from its Members.

Section 4.2 – SimCap Louisiana shall not charge fees to its meetings or any other sponsored activities.

#### **ARTICLE V – COORDINATING COMMITTEE**

**Section 5.1** – A Coordinating Committee shall manage the affairs of *SimCap Louisiana* in conformity with the provisions of this Charter and make decisions on behalf of its Members.

**Section 5.2** – The Coordinating Committee shall consist of the: Chair, Co-Chair, and Secretary.

**Section 5.3** – The responsibilities of the Coordinating Committee shall be as follows:

- (1) The Chair is responsible for overseeing all aspects of *SimCap Louisiana*, including: presiding, organizing, and running meetings and representing *SimCap Louisiana* to external organizations and partners.
- (2) The Co-Chair shall work with and support the Chair to manage *SimCap Louisiana* and oversee its operations.
- (3) The Secretary (which may comprise multiple Committee Positions) shall be responsible for keeping all records, including: meeting minutes, maintaining a membership list, and maintaining any forums, websites, or social media accounts. The Secretary will aid the Chair and Co-Chair in coordinating meetings, presenters, and planned professional events. The Secretary is also responsible for maintaining the Charter and updating the Charter when amendments are ratified.

Section 5.3 – The terms of Committee Members shall be for two calendar years with no term limits.

## Survey Results (1/4)

#### 9

- Objectives: Please choose SimCap Louisiana's two most important objectives
  - Increase awareness of LADOTD initiatives, national activities, and the latest SimCap tools (64%)
  - Provide educational opportunities to learn of more appropriate and efficient ways of conducting SimCap analysis (64%)

![](_page_51_Figure_5.jpeg)

- Increase awareness of state/federal initatives and SimCap Tools
- Increase LADOTD communication to stakeholders
- Provide a sharing forum
- Provide educational opportunities
- Become a mechanism to request education/training

## Survey Results (2/4)

#### 10

- Purpose of Educational Meetings: Please choose the two most beneficial activities you would like featured at the educational meetings
  - Training: internal or external speakers provide training on specific SimCap tools and software (64%)
  - Peer experiences: practitioners present on their experiences with a current SimCap analysis method or tool (46%)
  - Federal initiatives: external speakers present on current, SimCap-related FHWA projects, programs, initiatives, or guidance documents (46%)

![](_page_52_Figure_6.jpeg)

## Survey Results (3/4)

#### 11

#### Topics at Educational Meetings:

Select the topic(s) you would like discussed at the educational meetings

- SimCap studies to evaluate mitigation/management strategies for recurring congestion (64%)
- Guidance on the application of SimCap tools (55%)
- SimCap studies to investigate the impact of emerging technology (46%)

![](_page_53_Picture_7.jpeg)

■ Guidance on the application of tools

SimCap studies to investigate non-recurring congestion

SimcCap studies to investigate recurring congestion

SimCap studies to evaluate strategies for non-recurring congestion
 SimCap studies to evaluate strategies for recurring congestion

SimCap studies to evaluate strategies for recorring conges
 SimCap studies to investigate emerging technology

## Survey Results (4/4)

#### 12

#### Tool-Specific Topics: Experience vs. interest level

- Experience mainly with: (1) traffic signal optimization, (2) HCM-based tools, and (3) microscopic sim.
- Variety of topics of interest
- Top-Ranked: Traffic signal optimization
- High Interest and greatest knowledge gap: (1) mesoscopic sim., (2) macroscopic sim., and (3) sketch-planning

![](_page_54_Figure_7.jpeg)

![](_page_55_Picture_0.jpeg)

## THANK YOU FOR ALL ATTENDING!!

#### 7/17/2018 Educational Meeting (#1)